Publication Number 6500-10A

MCS6500

MICROCOMPUTER FAMILY

HARDWARE MANUAL

JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational purposes
only and is subject to change without notice.

Second Edition

Reproduced — 2023
This Revision: R230513-01

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA. 19401

PREFACE

The MOS Technology, Inc. MCS6500 Microcomputer System offering
combines the best features of second generation families into a product
line that is both a price and performance leader. A growing array of
products and a unique microprocessor family provide the customer with
answers to the complex design problems confronting today's
programmers and designers.

Integrated circuit fabrication techniques have moved microprocessors to
the forefront of complex, sophisticated components. The MCS6500 family
benefits from an advanced but proven process technology; N-Channel,
Silicon Gate, and Depletion Loads are the key elements providing the
high performance characteristics obtainable in the single supply 5-volt
system usage of the MCS6500 family.

The N-Channel, Silicon Gate technology is enhanced by use of Depletion
Loads which provides greater speed, lower power and smaller chip size
than previous processing approaches. lon Implementation techniques are
basic elements in providing control and stability of all processing
parameters necessary to achieve the electrical characteristics of the
MCS6500 product line. These characteristics provide a
price /performance combination which establishes the MCS6500 family
as the product offering best meeting the economic and technical demands
of today's system designs.

A word of explanation is in order regarding the MCS6500 product line,
since the concept of "Microprocessor Family" is indeed unique to the

industry. It is helpful to understand the basic product structure of the
MCS6500 family.

The MCS650X Series represents the Microprocessor Family. Within this
family will exist a series of 8-bit devices offering a wide range of options
and capabilities for the customer. For the single-application customer, a varied
selection of devices is at his disposal in choosing the one that best meets his
specific needs. The "Microprocessor Family" concept has an even greater impact

to the user who has a variety of applications, each of which can best be
served by a specific member of the family. It is important to this user that
all of the different microprocessors he selects maintain compatibility —
both hardware (from the standpoint of bus and electrical specifications)
and software. The MCS650X product line is the first microprocessor
family to achieve such a level of compatibility because it was indeed
conceptualized as a totally software and hardware compatible family of
microprocessors offering a range of performance options from which the
designer can select. The MCS6501 and MCS6502 are the first two 40-
pin members of the MCS650X family, each offering 65K bytes of
addressable memory. The MCS6503, MCS6504 and MCS6505 are the
first 28-pin versions with various options of addressing capability and
control functions from which to choose.

The MCS652X Series represents Peripheral Input/Output devices, the
first being the MCS6520 which is a direct replacement for the Motorola
MC6820 Peripheral Interface Adapter (PIA). Subsequent members of this
series will include devices with expanded I/O capabilities.

The MCS653X Series represents combinational devices — those
consisting of various tradeoffs in RAM, ROM, 1/O, and Timing. The first of
these is the MCS6530 which contains 1K bytes of ROM, 64 bytes of RAM,
an Interval Timer and 16 1/O lines. Subsequent products in this series will
provide the customer with different combinations and new
implementations of |/O, Timing and Memory.

The MCS654X Series represents Read Only Memories specifically
tailored to meet the needs of large program storage required in many
of the applications of the MCS6500 family of products. The first of these
will be a 16K (2K X 8) ROM, the MCS6540.

All of the MCS6500 product lines outlined utilize the same fabrication
techniques and meet identical electrical specifications. With this family of
compatible products the designer of today has at his disposal the
elements necessary to develop a system configured to meet the most
demanding tasks.

Complementing the MCS6500 family is a selection of Random Access
Memories totally compatible with the microcomputer family. The first of
these will be the MCS6102, a 2102 equivalent, and the MCS6111, a
2111 equivalent.

To allow for minimum 1/O cost and maximum user flexibility, all of the
MCS6500 products are compatible with the M6800 bus structure.

Chapter 1 of this manual introduces the reader to the MCS6500
Microcomputer System. It includes an introduction to terminology, an
explanation of system components of a general microcomputer system,
and then discusses the components of the MCS6500 Product Family.

Chapter 2 is applications-oriented, with a discussion of system
configuration, the 1/O port, handshaking and specific examples on
interrupt prioritizing, interfacing with peripherals, direct memory
addressing techniques, and control of memories in the system.

Chapter 3 is directed at the important task of bringing up a system. It
takes the reader through a step-by-step procedure in analyzing,
statically and dynamically, the basic elements of the system to assist the
user in a smooth transition from a conceptual system to an operational
one.

TABLE OF CONTENTS

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

1.0 Designing with Microcomputer Systems

1.

1

1.2. Introduction to the MCS650X Microprocessor Family

1.2.1 The MCS6501
1.2.2 The MCS6502
1.2.3 The MCS6503, MCS6504 and MCS6505

1.3 MCS6500 System Concepts

1.3.1 Bus Structure
1.3.2 Processor Interrupts
1.3.2.1 Applications for Interrupts
1.3.2.2 Interrupt Prioritizing
1.3.2.3 System Interconnect for Interrupts
1.3.2.4 Interrupt Servicing
1.3.2.5 Interrupt Request (IRQ)
1.3.2.6 Non-Maskable Interrupt (NMI)
1.3.3 System Reset

_ e e e e e a3

1
1
1
1
.
1
1
1
1

—_

.

.1 Organization of a Microcomputer System
.2 Basic Operation
.3 Addressing Terms and Concepts
.3.1 Bit
.3.2 Address Space
.3.3 The Address Page
.4 System Components
4.1 Clock Generator
.4.2 Program Memory
.4.3 Data Memory
1.1.4.4 Input /Output Devices
1.1.4.5 The Microprocessor

Introduction to Microcomputer Systems

OO VWWWOwWOoO OO A NMNNI

—_

—_
N

12
14
14

15
16
20
22
22
23
25
27
27

1.4 The Microprocessors 30

1.4.1 The MCS6501 30
1.4.1.1 Introduction 30
1.4.1.2 The MCS6501 Pinouts 32
1.4.1.2.1 Vcc, Vss — Supply Lines 32
1.4.1.2.2 ABOO-AB15 — Address Bus 32
1.4.1.2.3 DBO-DB7 — Data Bus 34
1.4.1.2.4 R/W — Read/Write 36
1.4.1.2.5 DBE — Data Bus Enable 36
1.4.1.2.6 VMA — Valid Memory Address 36
1.4.1.2.7 BA — Bus Available 37
1.4.1.2.8 RDY — Ready 37
1.4.1.2.9 NMI — Non-Maskable Interrupt 38
1.4.1.2.10 IRQ — Interrupt Request 38
1.4.1.2.11 RES — Reset 40
1.4.2 The MCS6502 41
1.4.2.1 Product Characteristics 41
1.4.2.2 Device Timing — Requirements and Generation 41
1.4.2.3 SYNC Signal 44
1.4.2.4 S.O. — Set Overflow 44
1.5 Peripheral Interface Device — MCS6520 50
1.5.1 Introduction 50
1.5.2 Organization of the MCS6520 51
1.5.2.1 Data Input Register 54
1.5.2.2 Control Registers (CRA and CRB) 54
1.5.2.3 Data Direction Registers (DDRA, DDRB) 55
1.5.2.4 Peripheral Output Registers (ORA, ORB) 55
1.5.2.5 Interrupt Status Control 55
1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB)............. 55
1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors...56
1.5.3.1 Data Bus (DO-D7) 56
1.5.3.2 Enable (E) 56
1.5.3.3 Read/Write (R/W) 56
1.5.3.4 Chip Select Lines (CS1, CS2, CS3) 56
1.5.3.5 Register Select Lines (RSO), (RS1) 58
1.5.3.5.1 Reading the Peripheral A 1/O Port 59
1.5.3.5.2 Reading the Peripheral B 1/O Port 59
1.5.3.6 Reset (RES) 63
1.5.3.7 Interrupt Request Line (IRQA, iRQB) 63
1.5.3.7.1 Control of IRQA 63
1.5.3.7.2 Control of IRQB 64

vi

1.5.4 Interface Between MCS6520 and Peripheral Devices.....ccrinnesccncanne 64
1.5.4.1 Peripheral 1/O Ports 64
1.5.4.1.1 Peripheral A 1/O Port (PAO-PA7) 65
1.5.4.1.2 Peripheral B I/O Port (PBO-PB7) 65
1.5.4.2 Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2)............ 66
1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CA1, CA2)......... 66
1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2).....67
1.5.5 Summary of MCS6520 Operation 67
1.5.5.1 Control Register Operation 67
1.5.5.2 MCS6520 Operation in MC6500 Systems 70
1.6 Peripheral Interface /Memory Device — MCS6530 71
1.6.1 Introduction 71
1.6.2 Pinout Description 71
1.6.2.1 Reset (RES) 71
1.6.2.2 Input Clock 73
1.6.2.3 Read/Write (R/W) 73
1.6.2.4 Interrupt Request (IRQ) 73
1.6.2.5 Data Bus (DO-D7) 73
1.6.2.6 Peripheral Data Ports 73
1.6.2.7 Address Lines (AO-A9) 74
1.6.3 Internal Organization 74
1.6.3.1 ROM — 1K Byte (8K Bits) 74
1.6.3.2 RAM — 64 Bytes (512 Bits) 76
1.6.3.3 Internal Peripheral Registers 76
1.6.3.4 Interval Timer 76
1.6.4 Addressing 78
1.6.4.1 One-Chip Addressing 80
1.6.4.2 Seven-Chip Addressing 80
1.6.4.3 1/O Register — Timer Addressing 80
CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM.....ccccoevvmrurecncnnne 84
2.1 The System Configuration Task 84
2.2 Input/Output Techniques 85
2.2.1 The General Purpose Input/Output (1/O) Port 85
2.2.2 The Special Purpose Peripheral Interface Device 86
2.2.3 Configuring the General Purpose 1/O Port 87
2.2.3.1 Assignment of Outputs 88
2.2.3.2 Assignment of Inputs 88
2.2.4 Power-On Considerations 90

vii

2.2.5 Handshaking 94
2.2.5.1 Handshaking on Data Transfers from the Processor......ececvesesccnnee 94
2.2.5.2 Handshaking on Data Transfers into the Processor 95

2.3 Configuring the Interface Between the Microprocessor and the Support Chips......99

2.3.1 Assignment of Addresses in the MCS6500 System 99
2.3.1.1 ROM Address Assignment 102
2.3.1.2 RAM Address Assignment 102
2.3.2 Additional Address Assignment Techniques 104
2.3.3 Interrupts 104
2.3.3.1 Interrupt Prioritizing 106
2.3.3.2 Example 1: Selecting the Interrupt Vector 106
2.3.3.3 Example 2: Using the Processor Software Power 108
2.3.4 The Application of RDY to Controlling the Memory Interface.......ccocovvuencee 108
2.3.4.1 Interfacing Slow PROMs 108
2.3.4.2 Direct Memory Address (DMA) Techniques 112
2.3.4.3 Control of Dynamic RAMs in the MCS6500 SysteM.....cccevrerenceccnsunencae 113
2.3.5 Hold-Time Control — MCS6501 117
2.4 Additional System Considerations 119
2.4.1 Peripheral Interface Devices 119
2.4.2 RAM 119
2.4.3 ROM 120
2.5 Evaluating System Performance 121
CHAPTER 3 BRINGING UP THE MCS6500 123
3.0 Introduction to Microcomputer Testing 123
3.1 Static Testing 124
3.1.1 Introduction 124
3.1.2 Single Cycle Execution 124
3.1.3 Single Instruction Execution 127
3.2 Dynamic Testing 130
3.2.1 Introduction 130
3.2.2 Externally Induced Loops 130
3.2.3 Software Loops 132

viii

3.3 System Diagnosis Using Hardware Programmer Aids 133

3.3.1 KIM — Keyboard Input Monitor 135
3.3.2 TIM — Teletype Input Monitor 136
3.3.3 MDT — Microcomputer Development Terminal 138
3.4 Microprocessor Start-Up Procedure 139
3.4.1 Introduction 139
3.4.2 System Power — Step 1 139
3.4.3 Basic System Timing — Step 2 140
3.4.4 System Reset — Step 3 140
3.4.4.1 Static Analysis of System Details 144
3.4.4.2 Dynamic Analysis of System Details 145
3.4.4.2.1 Address Bus Verification 145
3.4.4.2.2 Data Bus Verification 146
3.4.5 Detailed Component Check 148
APPENDIX A A-1

LIST OF FIGURES

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

_ e e

—_ e e e e e o

N

.1 Organization of Microcomputer System. 5
.2 Address Bus and Relation to Memory Field. 7
.3 Portion of Read Only Memory Matrix. 9
.4 Pinout Comparison: MOS Technology MCS6501, Motorola MC6800......9
.5 Clock and Read/Write Timing Table (1 MHz Operation)ceeeeeeseunnes 17
.6 Two-Phase Clock Timing. 18
.7 Timing for Reading Data from Memory of Peripherals.ccecevvvrurererurunnee 18
.8 Timing for Writing Data to Memory of Peripherals. 19
.9 Interrupt Wire OR'd Hardware Configuration from Peripheral Interface
Devices to Microprocessor 24
10 Sequence to Service IRQ 26
11 MCS650X Internal Architecture 29
12 MCS6501 Pinout Designations 33
13 MCS650X System Timing Diagram 35
14 Examples of Interrupt Recognition by MCS650X. 39
15 MCS6502 Pinout Designation 42
.16 MCS6502 Time Base Generation — Crystal Controlled.ccceeueererurnnee 43
.16a MCS6502 Parallel Mode Crystal Controlled Oscillator.......cceceeeeeesereruenes 43
.16b MCS6502 Series Mode Crystal Controlled Oscillator.......ceececcurerecncnes 43
.17 MCS6502 Time Base Generator — RC Network 45
.18 MCS6502 SYNC Signal 45
.19 Functional Features of MCS6503, MCS6504, MCS6505coeeeeeveennnene 46
.20 MCS6503, MCS6504, MCS6505 Pinout Designations........eeeeeesesesesssasees 48
.21 MCS6503, MCS6504, MCS6505 Time Base Generation Crystal
Controlled 49
.22 MCS6503, MCS6504, MCS6505 Time Base Generation RC Network.......49
.23 Basic MCS6520 Interface Diagram 50
.24 MCS6520 Pinout Designations Peripheral Interface Adaptor. ... 52
.25 MCS6520 Internal Architecture 53
.26a Microprocessor Interface Timing — Read 57
.26b Microprocessor Interface Timing — Write 57
.27 a Peripheral A Interface Timing 60
.27b Peripheral B Interface Timing 61
.28a Peripheral |/O Port A Buffer. 62
.28b Peripheral I/O Port B Buffer 62
.29 Control Register Bit Designations 67

—_ e e e e e e 3

.30 Control of Interrupt Inputs CA1, CB1
.31a Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = "0").ccccvreerrrrerreerrreereennne
.31b Control of CA2 Output Modes
.31c Control of CB2 Output Modes
.32 MCS6530 Pinout Designation.
.33 MCS6530 Internal Architecture
.34 Basic Elements of Interval Timer
.35 Example of Interrupt Generated by Interval Timer
.36 MCS6530 One-Chip Address Encoding Diagram
.37 MCS6530 Seven-Chip Addressing Scheme.
.38 Addressing Decode for |/O Register and Timer.

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 Control of Low Order Bit of MCS6520 Output Register....vniureecnenes

2.2 MCS6520 Control of Transistor Driven Solenoids.

2.3a MCS6520 Control of PNP Transistor Driving Solenoid Coil.....ccceceururvrunee

2.3b MCS6520 Controlling Both Power and Drivers of Solenoid Cell
2.4 MCS6520 Driving TTL Buffers

2.5 MCS6520 Controlling Solenoids with Enable Signal and TTL Interface.......
2.6 Write Handshake Sequence.
2.7 Read Handshake Sequence
2.8 Organization of Microcomputer System 1
2.9 Example of "AND" Function Using High Order Address Lines............... 1
2.10 Typical Address Assignment 1
2.11 Page Zero Chip-Select Addressing Scheme 1
2.12 Selecting the Interrupt Vector 1
2.13 Using MCS6520 for Jump Indirect Interrupt Routines 1
2.14a Priority Encoder Connected to Low Order Bits of MCS6520............... 1
2.14b Priority Encoder to Peripheral Interface Scheme 1
2.15 Software Program to Implement Interrupt from above Hardware
Configuration 1
2.16 Interfacing Scheme for Slow PROMs 1
2.17 Logic Used to Generate Bus Available Signal for DMA Applications. 1
2.18 Control Logic for Refresh Signal for Dynamic RAMsccvuvevccncnnunenne 1
2.19 Timing Analysis of Data Hold Time 1

Xi

68
68
69
69
72
72
77
79
81
82
83

94
97
98
00
01

03
05
07
09
10
11

11
14
14
16
18

CHAPTER 3 BRINGING UP THE MCS6500

3.1 Suggested Static Test Control Logic. 125
3.2 Single Cycle Timing 126
3.3 Microprocessor Single Cycle Data Trap 128
3.4 Single Instruction Execution 129
3.5 Suggested Configuration for Dynamic Reset Testing.....c.cccvevurercecncnrusencas 131
3.6 MCS6501 Clock Timing Signals 141
3.6a Improper Clocks 141
3.6b Proper Clocks. 141
3.7 Address Lines in MCS650X Systems 142
3.7a Proper Address Lines 142
3.7b Excess Address Line Loading 142
3.8 The Data Bus in MCS650X Systems 143

Xii

CHAPTER 1

THE MCS6500 MICROCOMPUTER SYSTEM

The past several years have seen the development of an exciting new
concept in electrical design. Conventional system design is rapidly being
revolutionized by the large-scale, single-chip programmable
microprocessor. The microcomputer started out as a relatively simple,
difficult-to-use programmable device capable of handling simple control
or computational problems. However, it has since matured into a
powerful, inexpensive, easy-to-use device capable of controlling all but
the most complex of systems.

Three primary attributes of microprocessor-based systems are bringing
about this revolution. They are:

1. Microprocessors allow a significant reduction in overall systems
cost for products currently in production. Redesigning their products
around the microprocessor is permitting many manufacturers to
develop or maintain a price advantage over competitors.

2. The reduction in cost of microcomputer systems is opening up vast
new markets for microprocessors. A great number of systems which
were simply impossible or were at best impractical, are being
designed and marketed today using the modern, low-cost
microprocessors.

3. At the same time the price of microprocessors is dropping, the
capability is rapidly expanding. This also allows them to be
designed into more systems than ever before.

Anyone contemplating a new design or trying to reduce cost in an existing
design must ask himself if a microprocessor will solve his problem.

The success of the microprocessor is based on the fact that it allows the
design engineer and programmer to apply their expertise in solving a
multitude of design problems using cost effective ICs. A small number of
large integrated circuits can be configured to solve design problems from
the simplest to the most complex.

If the same integrated circuits are used to solve a multitude of unique
designs, the first question one must ask is, "What makes them unique?"
The answer is: Programming. Although many different designs may share
common hardware, each has its own unique program. This brings us to
another very important characteristic of microcomputers. The integrated
circuit which makes each system unique is the "Read-Only Memory"
(ROM) which stores the system program. It is relatively easy for the
integrated circuit manufacturer to establish the particular pattern which
uniquely defines the data in a ROM. As a result, the typical charge for
"designing" a ROM is generally less than 10% of the cost of designing a
totally custom logic chip. Further, the user benefits from high volume
standard product which is still unique for his own application due to the
"customization" of one element of his system.

1.0 DESIGNING WITH MICROCOMPUTER SYSTEMS

It will probably surprise many designers who are approaching the subject
of microcomputer design for the first time when they discover that
designing a system around a microprocessor is much the same as
designing around conventional logic. The total approach is the same; the
process differs only in the implementation of each step.

A brief examination of the system design process will help to put
microcomputer design in perspective and will also assist in clarifying the
purpose of this manual. One can expect to perform the following steps in
designing a system:

1. Define the requirements of the system. What functions should it
perform?

2. Define basic system components.

3. Complete design details.

4. Build and test prototypes.

5. Finalize design and begin production.

Step 1 is true for any system and, in general, for any product. Step 2 is
the first point of departure for microprocessor based designs. It is at this
time that the designer must consider the possibility of using a
microprocessor in his system. For the very cost-sensitive application he
must look very carefully at total systems cost. Can a microprocessor do
the job within the price constraints imposed? At the other end of the design
spectrum, the system designer must evaluate the capability of
microprocessors to assure himself that the available devices can in fact
perform the required function. Will a microprocessor be fast enough to
run the system2 Will it take more than one processor?

The purpose of this manual is to teach the designer how to effectively
configure a microprocessor-based system and to evaluate the
performance of the system. After this step, the design will be completed
by development of the system program. Implementation of the system
program is discussed in the Programming Manual.

3

1.1 INTRODUCTION TO MICROCOMPUTER SYSTEMS

1.1.1 Organization of a Microcomputer System

Figure 1.1 illustrates the basic organization of a microcomputer system. It is
important that the designer understand the operation of each component as well
as the operation of each data path in the system. Each of these is discussed
separately below. In addition, the following discussion describes the operation of
the overall system and the use of the various signal paths.

1.1.2 Basic Operation

The microcomputer is a system which can be characterized as very simple in its
detail and very complex in its overall operation. It carries out rather complex tasks
by performing a large number of simple operations. Control of the system is
primarily the responsibility of the processor. By putting out addresses to program
memory, it controls the sequence of operations performed and by interpreting and
executing the instructions which it receives from the program memory, it controls the
actual operations carried out by the system. The processor is by far the most
complex device in the system. For this reason, it is important to overall system cost
that this part stay the same for many different applications. In this way, the
relatively high development cost can be shared by thousands of users. In addition,
those thousands of users can all benefit from the economics of large-scale
production.

The processor causes the system to perform the desired operations by reading the
first instruction in the program, and performing the very simple task dictated by
the specific pattern of bits in this instruction (referred to as "executing” that
instruction). It then goes on to the next instruction in the program and executes it.
This simple operation of fetching an instruction and executing it is performed over
and over, each time on the next instruction in sequence. In this way the program
instructs the processor to bring about the desired system operation.

1.1.3 Addressing Terms and Concepts

Before entering into a detailed discussion of the system operation, it would be
useful fo define a few terms and to intfroduce a few concepts concerning
addressing. This should assist in an understanding of the detailed discussions which
follow.

1/0 PORT

AN

“AAAAAAAL

PROGRAM DATA PERIPHERAL
MEMORY MEMORY INTERFACE
(ROM) (RAM) DEVICE
P | p
€ {
) —~)
¢ \/ AV4 AV4 "
'y {
))
WRITE ﬁ
enase ® U *
cLock
&—p| MicroprocESSOR
GENERATOR INTERRUPTS
OTHER
CONTROL
€ sionaLs

Organization of Microcomputer System

FIGURE 1.1

ADDRESS
BUS

DATA
BUS

1.1.3.1 Bit

The term "Bit" is a general term referring to anything that can be assigned
to binary value, i.e., anything that can be given a value of 0 or 1. Thus,
an eight-bit data bus is a set of 8 lines which can be assigned a value of
logic O or logic 1. On these lines, the logic values are represented by two
different voltages or currents. Similarly, a 16-bit binary display can be
built with 16 individual lamps. The logic 1 is represented by the lamp
being on.

In this text, reference is made to an 8-bit data bus, a 16-bit address bus,
4 bits of data, 8-bit registers, etc. In all cases, definition of a bit remains
the same.

1.1.3.2 Address Space

The concept of an address space is very useful in understanding
microcomputer systems. The term "address space” refers to the total set
of addresses which the microprocessor can generate. For example, if a
processor had only 4 address lines, it could generate the addresses O —
15 (binary 0000 to binary 1111). This would not be adequate for any
microcomputer operation and, consequently, the typical processor has
between 12 and 16 address lines. Since each line can assume a value of
0 or 1, these devices can usually address from 4,096 to 65,536 separate
addresses. Figure 1.2 contains a pictorial representation of the address
space available in a typical 8-bit microcomputer with sixteen address
lines. In addition to the general address space, this figure introduces the
PAGE concept discussed below.

1.1.3.3 The Address Page

The concept of a PAGE in memory is very important in 8-bit microcomputer
systems. The internal organization of an 8-bit processor is around 8-bit registers,
8-bit parallel data paths, etc. Most arithmetic operations, logic operations, etc.
take place on 8 bits of data at a time. Likewise, the 16-bit counter which
determines which instruction is being executed is actually divided into two 8-bit
busses. One contains bits 0 — 7 (low order address bits) and the other contains
bits 8 to 15 (high order address bits). With this in mind, one can think of the
address space shown in Figure 1.2 as consisting of 256 blocks, each consisting of
256 specific address locations. Each of these blocks is referred to as a "PAGE"

6

¢'L 3¥N9I4

sng viva pal4 Adowayy of uoip|dy PUP sSng SSLIPPY
)
‘q
" 4 — 44 GEGSQ L Lt L L Ll L 1 1 L1
e~
I 1o — 44 18CS9 L00OO 0000 [O A L1
“ o0 — M 08259 0000 O0O0OO L L L1 L1
| 44 — 34 64TS9 L Ll L L Ll 0o 1 L1 L1
|
|
|
-I/\
/I\
|
|
|
| o0 — LO 9s¢T 0000 0O0O0O L 0 0 O 0 0
“ 44 — 00 i14 L L1 L Ll 0O 0 0 O 0 0
L
»
| 1o — 00 L L0O0OO 00O0O 0O 0 0O 0 0
| 00 — 00 0 0000 0O0O0O 0O 0 0 O 0 0
(s21Ag 9€559) idquinN | JaqunN YIGWNN oLzZE ve§o9olL 8 6 OLILL ¢cCL¢€ElL
ajhg abng
auom 18pio Moq 19pi0 YBIH
aidid AAOWIW 9po) ssalppy
319vssiyaav TVWID3IAVX3IH 1VWID3a $S3¥AAV A¥VNIE

of memory. The high order 8 bits of the address (ADH) therefore indicates
in which page the address is located, and the low order 8 bits (ADL)
indicates a specific address on that page.

The first page in memory (ADH = 00) is referred to as page zero. The
next higher order page (ADH = 01) is referred to as page 1, etc.

1.1.4 System Components

The block diagram in Figure 1.1 shows the basic components which
comprise all microcomputer systems. Each of these blocks may consist of
one or more integrated circuits and, in fact, the functions may be
combined into single chips. However, the basic operation of each remains
the same.

1.1.4.1 Clock Generator

The clock generator produces a continuous waveform which is normally
used to control all signal transitions within the system. It acts as the "heart"
of the system. In the typical microcomputer system the address bus will
change during one half of the clock cycle and the data will be transferred
during the second half. In addition to interpreting the address, data and
control lines, the processor and support chips must also examine the
system clock to know when to put out data or when to latch in data
generated by another device.

1.1.4.2 Program Memory

The program memory stores the sequence of instructions which comprises
the system program. Like any memory, this unit puts a pattern of 1's and
0's on the data bus in response to the address on the address bus input.
Each unique address selects a set of 8 binary bits and places this data on
the data bus. Note that it does not matter where the address is generated
or where the data is used; the memory simply obeys the rule that, given an
address, it will put the corresponding 8 bits of data on the data bus.

A unique characteristic of most microprocessor-based systems is that the
program is usually stored in "READ-ONLY" memories. The data is stored in
a fixed pattern of bits in the memory. Figure 1.3 shows a section of a
semiconductor READ-ONLY Memory (ROM).

8

SHIE=(

O.C

)|) |
SHIN=(

)|) |
IHINGN
ININSN

NSO N HONNONNOITOIO]
IK=0N
)

1) [1] (C

 C

C

€

¢

_—
=
-
=i
C
=
)
-
==
-
-
=
)

SHINIESNIR:=(
}C
)|

—
o
—
-

=
—

) X) [) |

SHININ(=

IHINONININSNININSN
JHIEONININGNIN-=8N
ININONININ(
JHIEONIN
(=]HIEONIN

!

(i

SHIR=({=

—
-

o
=
=
=
—

IN=({=]NIEONIN

IN=0NIK
ININONININC
)|

/¢

=

=]HIN(=

¢

=

SHIR=(=]HINONININONIN:=0N

NIN=(=]HIONIR

SHIN=NIN

€
SHIR
/¢

—_—
)
-
-
e
)
-
O
-
==
e
-

(=IHIENINI=IN=3NIN

(=IK
SHIE-=0HIN

,_
)
]
D
=]
G |
(&=
<=
—
¢

) || 0]
ONIN-=0NIK

(== NN ININSNININ=]N=3NININSN
(=1N=8NIK

(O |
0 |||

GHININONININGNIR-=3NININSNIR=NININON

GRININONININONININ(
GEININC=]NINSNININ{:

IHORINIEONINIEONINI=]NIONINIEONININON

0 (| XS]

-
—
=
——
-

Portion of Read Only Memory Matrix
FIGURE 1.3

Since the data is stored in the physical configuration of the device, the
data will not be lost when power is disconnected from the chip. In
addition, it is only necessary to insert the device into its socket to provide
the system program. The term "Read-Only Memory" refers to the fact
that, in system operation, it is impossible for the processor to cause data
to be stored in the device. The processor can only "READ" the data stored
in the device during the manufacturing process. "READING" a memory
involves the simple process of supplying an address to the device to
obtain the corresponding 8 bits of data on the data bus.

1.1.4.3 Data Memory

For temporary storage of input data, the results of arithmetic
operations, etc., the microcomputer uses a Read/Write Memory,
commonly referred to as a RAM (Random Access Memory). The
processor can store data in the RAM (called "WRITING" the RAM),
or it can read back the data it has stored. As in the ROM, each
address corresponds to eight memory cells. However, in a RAM
the data must be placed into the memory by the processor and is
stored in cross-coupled latches. Turning off the power to the chip
will cause the loss of all data stored there. The data is said to be

9

"volatile." Data in a ROM is not lost when power is disconnected from the device;
the data is therefore referred to as "non-volatile."

"WRITING" data into a RAM takes place when the Write-Enable signal goes to
the write state. At this time the data on the data bus will be stored into the eight
memory cells corresponding to the address on the address bus. The processor
can READ this same data by supplying the proper address and keeping the
Write-Enable line in the Read state.

1.1.4.4 Input/Output Devices

The Input/Output Devices are the circuits which interface the printer,
keyboard, displays, etc. to the processor. These allow the processor to read
data from the keyboard, to test the state of sensors and switches, and to
display or to print the results of internal operations.

No matter where data is generated, it must be in the form of 1's and 0's
before the processor can work with it. Likewise, actions to be initiated by
the processor must be triggered by 1's and O's transferred by the processor
to a set of output lines.

The transfer of data from the processor to an output device is usually
accomplished by "WRITING" the data out in much the same manner as the
processor writes data into RAM. Each set of 8 input or output lines (referred
to as "PORT") is given an address and the processor simply writes data to
that address. For each "1" written out to the peripheral port an output is
set high and for each "0," the corresponding output is set low.

Although the basic concept of peripheral control is simple, the actual
implementation of these interfaces can involve many sophisticated
techniques designed to allow the processor to maximize its ability to control
peripherals and perform internal operations concurrently. These techniques
are discussed in detail in Chapter 2 of this manual.

1.1.4.5 The Microprocessor

At first glance it may seem strange to discuss the support chips in the
microprocessor-based system before mentioning the processor.
However, this approach is necessitated by the fact that most of the
inputs and outputs on the processor are aimed at properly controlling
the support chips and peripheral devices discussed above.

The address bus, the bi-directional data bus and the Write-Enable
line allow the processor to exercise direct control over the rest of the
system. The address bus puts out addresses to control the source or

10

destination of data transfers. These addresses are derived from various
sources within the processor. During the fetch of instructions from program
memory, the addresses are usually derived from a counter which controls
execution of sequential instructions. Addresses for data transfers between
the processor and RAM are usually derived directly from the program or
are calculated from the data in the program and data in internal
registers.

The bi-directional data bus serves as a path for transferring data into
and out of the processors. The direction of the data transfer is determined
by the Write-Enable line.

Another special function found in modern microcomputer systems is the
interrupt. This function allows the peripheral devices to directly affect the
operation of the processor. When the interrupt signal is generated, the
processor usually completes its current instruction and then, under
program control, will respond to the interrupt. The importance of this
function is that it allows the processor to execute the system program
without requiring the system program to monitor the status of the
peripheral device. The software which handles the operation of each
peripheral will be executed only when required.

11

1.2. INTRODUCTION TO THE MCS650X MICROPROCESSOR FAMILY

The initial MOS Technology, Inc. microprocessor offering consists of the
MCS6501, which is MC6800 compatible; the MCS6502, which has clock
drivers on-chip; and three 28-pin processors, the MCS6503, MCS6504,
and MCS6505. All of these devices are aimed at a specific range of
applications. Therefore, it is important to develop an understanding of
the capabilities of each and the differences between them.

The MCS6501 has application in existing M6800 systems where
conversion to the MOS Technology, Inc. processor is to be performed. This
processor requires the full high-level two-phase clocks of the M6800
system. The MCS6502 is expected to find application in all new designs
which require a full 16-bit address bus. However, in the small cost-
sensitive system, the 28-pin processors can represent a savings in both
processor cost and printed circuit board area. The MCS6503, MCS6504,
and MCS6505 will find application in all new designs where the system
will operate within the addressing limits.

1.2.1 The MCS6501

The MCS6501 is the first member of the microprocessor family to be
intfroduced. It is designed to be pin compatible with the M6800 and
therefore conversion from the MC6800 to the MOS Technology, Inc.
MCS6501 requires only that the system be reprogrammed. This allows
the M6800 user to take full advantage of the software power
(addressing modes, etc.) of the MCS650X processor family.

Although the conversion process is fairly simple, it is important to keep in
mind the differences between the MC6800 and the MCS6501. The pins
on the MCS6501 all do the same general function as those on the
MC6800 but the function performed may differ somewhat in detail.
Figure 1.4 contains a detailed, pin-for-pin comparison of these two
processors. A thorough understanding of this table, along with an
understanding of the MCS650X software will allow the system designer
to perform the conversion with very little difficulty. The MCS6501
provides a full 16-bit address bus, 8-bit data bus and two interrupts.

12

Motorola MOS Technology Motorola MOS Technology
PIN# 6800 6501 PIN # 6800 6501
1 Vss Vss 21 Vss Vss
2% Halt Ready 22 A12 Al2
3 @ (in) @ (in) 23 A13 Al13
4 RQ RQ 24 Al4 Al4
5% VMA VMA 25 Al15 Al5
6 NMI NMI 26 D7 D7
7 BA BA 27 D6 Dé
8 vdd vdd 28 D5 D5
9% AO AO 29 D4 D4
10 Al Al 30 D3 D3
11 A2 A2 31 D2 D2
12 A3 A3 32 D1 D1
13 A4 A4 33 DO DO
14 A5 A5 34 R/W R/W
15 Ab Ab 35 N.C. N.C.
16 A7 A7 36 DBE DBE
17 A8 A8 37 @ (in) @ (in)
18 A9 A9 38* N.C. N.C.
19 A10 A10 39% T.S.C. N.C.
20 All All 40 Reset Reset
*Differences
PIN # MOTOROLA 6800 MOS TECHNOLOGY 6501
2 Halt — Stops processor after Ready — Stops Processor during current
completing current instruction. instruction. Address Bus reflects current
Address Bus in off state. address being read.
5 VMA - Signal determines when ~ VMA — No need for Valid Memory
address from processor is valid. Address Signal. All addresses are valid
at all times. This pin is internally tied to
Vdd and can be used as a VMA signal in
high state.
9 Address Bus uses Tri-State Address Bus uses TTL level Output Drivers.
Output Buffers.
38 No Connection No Connection
39 T.S.C.— Three-State Control N.C. — No need for TSC since Address is

Controls all Three-State Buffers,
Address Bus and Data Bus.

State of Data Bus.

Pinout Comparison

MOS TECHNOLOGY INC. MCS6501, MOTOROLA MC6800

FIGURE 1.4

13

not Three-State and DBE Controls Three-

1.2.2 The MCS6502

The second member of the processor family is a 40-pin device which
provides all the features of the MCS6501, along with an "on-the-chip"
oscillator and clock drivers. This device should be used in all new designs
which require the capability of the 40-pin processors. The clock drivers
can be driven with a single TTL level square wave or with the internal
oscillator. The frequency of operation of the internal oscillator can be set
by attaching an R-C combination to the chip and, if the clock stability is
required, by attaching a crystal between the oscillator and ground. This
feature totally eliminates the problems encountered in generating
MC6800 type clock signals.

As in the MCS6501, the MCS6502 provides a full 16-bit address bus, 8-
bit bi-directional data bus and two interrupts. In addition, the MCS6502
provides a sync signal which indicates those cycles in which the processor
is fetching an operation code from program memory.

1.2.3 The MCS6503, MCS6504 and MCS6505

Three 28-pin versions of the processor are available. These three differ
in the number of address lines and the number of interrupts provided.
Having all three options available allows the designer to tailor his
processor to his particular application.

The MCS6504 provides a total of 13 address pins and can, therefore,
address a full 8K bytes in its memory space. However, this part provides
only one interrupt request input, IRQ. The non-maskable interrupt (NMI) is
not included in the pinouts of this device.

The MCS6503 and MCS6505 provide one less address line. In the
MCS6503, this address line is replaced with a second interrupt input,
NMI. In the MCS6505, this address line is replaced by the RDY signal. All
other functions on these processors are the same. The details of each of
these pins are discussed in the following sections.

The operation of the various busses, control signals, etc. is exactly the

same on all MCS650X products with all processors obeying the system
specifications discussed in Section 1.3 of this manual.

14

1.3 MCS6500 SYSTEM CONCEPTS

1.3.1 Bus Structure

The MCS6500 microcomputer system is organized around two primary
busses. Each bus consists of a set of parallel paths which can be used to
transfer binary information between the devices in a system. The first bus,
known as the ADDRESS BUS, is used to transfer the address generated
by the processor to the address inputs of the memory and peripheral
interface devices. The processor is the only source of addresses in a
normal system, so this bus is referred to as "unidirectional." The address
bus consists of 16 lines on the MCS6501 and MCS6502. This allows the
processor to access (READ or WRITE) up to a total of 65,536 memory
words, registers, etc. In the MCS6503, MCS6504, and MCS6505, the
address bus contains fewer lines; therefore, they operate with a smaller
"address space." This is discussed in detail in Section 1.1.3.

The data bus in the MCS6500 microcomputer system consists of an 8-bit
bi-directional data path. These lines transfer data from the processor to
the selected memory word, etc. during a WRITE operation and from
memory into the processor during a READ operation. All data and all
instructions are transmitted on the data bus.

The direction of the data transfers is controlled by the READ/WRITE
(R/W) line on the processor. This line performs the Write Enable function
described in Section 1.1.4.3. As long as the R/W line is high (> 2.4V DC),
all data transfers will take place from memory to the processor (READ
operation). This line will go low only when the processor is going to WRITE
data out to memory.

As in most microcomputer systems, the timing of all data transfers is
controlled by the system clock. The clock itself is actually two non-
overlapping square waves. This two-phase clock system can best be
thought of as two alternating positive-going pulses. This text will refer to
the clocks as Phase One and Phase Two. A Phase One clock pulse is the
positive pulse during which the address lines change and a Phase Two
clock pulse is the positive pulse during which the data is transferred. The
timing of the signals on the Address Bus, Data Bus, and R/W line are
shown in Figures 1.5 through 1.8. All signal transitions are specified with
respect to the Phase One and Phase Two clock signals.

15

In particular, the address lines and the R/W line will stabilize during
Phase One, and all data transfers will take place during Phase Two.

The specific timing specifications for operating at a 1 MHz clock rate are
also given in Figure 1.5. Note that the sequence of operations will be the
same for all processors. However, these timing specifications will change
for devices which are specified to operate faster than 1.0MHz. The
address is guaranteed to be stable 300 nanoseconds after the leading
edge of Phase One, and the data must be stable 100 nanoseconds
before the trailing edge of Phase Two. At 1.0 MHz operation, this allows
the memory devices approximately 57 5ns to make data available on the
data bus. Although there are many factors which determine the actual
data and address generated within the system, it is important to keep in
mind that the basic operation shown in Figures 1.6, 1.7 and 1.8 does not
change. These figures specify the system bus discipline which applies to
all MOS Technology, Inc. processors and support chips.

1.3.2 Processor Interrupts

Through the generation of processor interrupt signals, the peripheral
devices (printers, keyboards, etc.) can request service from the processor.
Although this technique is relatively simple in concept, the proper
generation and control of interrupts is one of the most important problems
which the designer will face. Total system capability can be greatly
expanded if the processor is required to execute the peripheral software
only when it is absolutely necessary. This is the goal of a well-planned
interrupt structure. The interrupt structure is very much a systems
sophistication problem since it is the entire system which must properly
respond to the interrupt inputs. In fact, the actual signals to which the
system must respond are usually applied to the inputs of a peripheral
interface device. In this device, the interrupts are enabled, disabled and
latched until the interrupt is processed. The peripheral interface device
generates signals which meet the requirements of the processor interrupt
inputs.

There are two interrupt input lines to the microprocessor, RQ (Interrupt
Request) and NMI (Non-Maskable Interrupt).

Since the requirements of the two interrupt inputs differ, they will be
discussed separately below. The response of the processor to these
inputs is very similar, however, after the interrupt is recognized. For this

16

CHARACTERISTIC SYMBOL| MIN. | TYP. | MAX [UNIT
Cycle Time Teve 1.0pus | — — us
Clock Pulse Width O, PWH®:| 430 | | ns
(measured at Vcc-0.2V) @ PWH ®2| 430
Rise and Fall Times
(Measured from 0.2V to Vcc-0.2V) Tr, Te T T 25 ns
Delay time between Clocks T 0 _ _ ns
(Measured at 0.2V) P
CHARACTERISTIC SYMBOL| MIN. | TYP. | MAX | UNIT
Read/Write Setup Time from MCS650X Trws — 100 | 300 | ns
Address Setup Time from MCS650X Taps —_ 200 | 300 | ns
Memory Read Access Time Tr

T — — | 500
Teyc= (Taps = Tosu = TR) Ace ns
Data Stability Time Period Tosu 100 — — ns
Data Hold Time T 10 30 — ns
Enable High Time for DBE Input Ten 430 — — ns
Data Setup Time from MCS650X Tmbs — 150 | 200 | ns

Clock and Read/Write Timing Table (1MHz Operation)
FIGURE 1.5

17

> Tcyc P>

PWHO| —p>

L r

—— A

—»| TD[@— —PITD e
vce - 0.2V |
®2
X 0.2V A
TF|— —»Rf<¢— PWHD)
Two Phase Clock Timing
FIGURE 1.6
< TCYC >
fFvce - 0.2V /
(0] / \
—» €4—TR
02 \ / \c 2.0V
[TRWS 9>
2.0V 2.4V
R/W
2.4V
D —
ADDRESS 2.0v
FROM MPU 0.8V NN 0.4V
€ TADS > 2.0v 249
DATA FROM XY 0.4V
MEMORY
< TACC ———— P4~ TDSU —»|TH [€—

Timing for Reading Data from Memory or Peripherals
FIGURE 1.7

18

< Tcye >
/| vcc - 0.2v
o)
£ | 0.2v £
—»>|
A vcc - 0.2v
®2 \
~
[€—TRWS |
I NN
S
ADDRESS 2.0V
FROM MPU 0.8V
P
2.0V
[€— TADS —P>|
DATA
FROM MPU 0.8V
€~ TMDS > —»| TH €
—
DBE = ®p \
2 X
< @¢— TEH —

Timing for Writing Data to Memory or Peripherals
FIGURE 1.8

19

reason, the internal operation of the processor during interrupt servicing is
discussed in the detailed analysis of the processor chip. Instead, this section
will concentrate on the system level considerations which are required to
assure proper operation of the interrupt structure.

1.3.2.1 Applications for Interrupts

One of the most important tasks facing the microcomputer system designer is
the determination of those signals which will cause processor interrupts and
those operations which will take place in response to these interrupts. A
detailed discussion of these considerations is included in Chapter 2 of the
manual; however, a few examples of interrupt-driven operations will be
presented here to help the designer develop an understanding for why this
technique is used extensively in microcomputer systems.

Example 1 — A Fully-Decoded Keyboard

The problem of data entry is solved in many systems by a keyboard. In small
systems, the interpretation of the binary code associated with each key can be
determined by the processor. However, in large data terminals, the keyboard
usually includes an encoder which generates the unique code corresponding to
each key. When a key is closed, the corresponding code is placed on the output
pins and a strobe signal is generated to indicate that a key has been pressed.

The keyboard represents a perfect candidate for interrupt-driven operation.
The interrupts occur relatively infrequently and the operation to be
performed is relatively simple. The keyboard strobe line is connected directly
to an interrupt input on a peripheral interface device. Each time a strobe
signal is generated, an interrupt occurs, the processor reads the data on the
peripheral port into memory, analyzes this data and then returns to the
program that was in process. If no keys are pressed, the processor spends
no time at all in servicing the keyboard.

Without the interrupts, the processor would have to read the keyboard
data into memory periodically in order to detect an active key. This
operation would be performed about every fifty to one hundred
milliseconds. In addition to detecting an active key, the processor must make
sure that each separate activation of a key is detected once and only once.
This is discussed in sections 1.3.2.5 and 1.3.2.6. This software is much more
complex than the simple interrupt routine. Another drawback of non-
interrupt processing is that the processor is required to spend a periodic

20

portion of its time on the keyboard. In many systems, this is not a
problem, but in large terminals, etc., the time spent checking for
keyboard strobes could be better spent in other operations. The
designer must, therefore, ask himself if the system under development
is such that the processor can perform the keyboard strobe checking
function while still completing its other tasks.

Example 2 — A Scanned Display

Although time is a major factor in determining the necessity of interrupts,
the interrupt technique can also be extremely useful when performing
parallel operations. A prime example of this can be found in a system
which contains a digital display and/or printer.

A digital display is usually "scanned" such that each digit is driven for
a short period of time in sequence. The entire display is scanned at a
rate which the eye cannot detect. However, it can be noted here that
the display requires scan-related attention from the processor at fixed
intervals. It is very difficult for the processor to calculate repetitive time
intervals while it is performing its normal system program routines. The
processor would much prefer to run the system program without
consideration for the display time intervals, only executing the display
software when it is required.

A solution to the above problem is the generation of processor interrupts
at fixed intervals using an external counter or clock. Each time an
interrupt occurs, the data for the next digit in the display is placed on
an output port. The processor then returns to the program it had been
executing.

Both of the operations described above represent solutions to system
problems. Events which happen very infrequently and events which must
be performed in parallel with other events or in parallel with the main
system program should be seriously considered as candidates for
interrupts. Additional considerations are described in Chapter 2 of this
manual; however, it is important to note here that the typical system
may have several sources of interrupts, each with its own timing and
each with its own set of operations which must be performed in response
to the interrupts.

21

1.3.2.2 Interrupt Prioritizing

After a careful analysis of the total system and a determination of all the
sources of interrupts, the designer must ask himself, "What happens if more
than one interrupt source requires attention at one time2" A priority level must
be established between the various interrupt sources. Which ones must be
taken care of within a very short period? Which ones can be put off for a
while? This prioritizing and the technique for selecting among several
concurrent interrupts is very important to the system operation and should be
established early in the system development process.

The MCS650X-based system can employ several hardware methods of
determining the highest priority active interrupt. These usually involve using a
special "priority encoder" which allows the processor to go directly to the
software which services the highest priority interrupt. After this is complete, it will
go to the next higher priority and execute that software. However, the
MCS650X family provides a much less expensive method of interrupt
prioritizing. This is the "polled” interrupt. With this technique, each time an active
inferrupt source is detected, the processor executes a "polled" interrupt program
that interrogates the highest priority interrupt, then the next highest and so on
until an active interrupt is located. The program services that interrupt and returns
to the "polled" interrupt program and continues to interrogate the next highest
priority interrupt until all have been interrogated or clears the interrupt disable
to allow nested interrupts. The "polled" interrupt program is always executed
when an interrupt occurs so that all interrupts that occur concurrently will be
serviced in order of priority level.

Several hardware techniques for prioritizing interrupts are discussed in

Chapter 2 of this manual. The next section, however, describes the system
interconnect which allows use of the simple "polled" interrupt.

1.3.2.3 System Interconnect for Interrupts

In the simple "polled" interrupt technique for prioritizing interrupts, the
interrupt software actually determines the highest priority active
interrupt. The IRQ or NMI interrupt request signals simply cause the
processor to jump to the polling software.

For this reason, it is possible to "OR" the various interrupt signals
together to form the signal for the processor. Any active interrupt
source will then cause the processor to do the interrupt polling and

22

servicing operation. Provision for generation of this OR function is
provided in the MCS6500 family peripheral interface devices. Since
these peripheral adapters perform many of the enabling and latching
functions necessary for proper interrupt servicing, the peripheral
adaptor interrupt output then provides the actual signal which interrupts
the processor. These interrupt outputs can be "WIRE-OR'd" by
connecting them all together and then connecting this single line to the
processor. This input should then be pulled to +5V with a resistor. Any
one of the interrupt outputs on the peripheral adaptors can then pull
this interrupt low. This simple configuration is shown in Figure 1.9.

1.3.2.4 Interrupt Servicing

Although a great deal has been said previously about the process of
establishing interrupts and determining just what happens in response
to an interrupt, it would be useful to detail the sequence which takes
place when an interrupt is recognized by the processor. This will
establish a basis for understanding of the details of the processor
interrupt inputs.

An interrupt request is signaled by a GND (< 0.4V) signal on the
interrupt request input. This interrupt will be recognized after the
processor completes the instruction which it is currently executing. The
next step is to store enough of the contents of the internal processor
registers to assure that the processor can resume execution of the
program which was interrupted. In particular, the Program Counter and
the Processor Status Register are stored in a series of memory locations
specified by another internal register, the Stack Pointer. As discussed in
Chapter 9 of the Programming Manual, saving the contents of the
Program Counter and Processor Status register uniquely defines, in
memory, the state of the microprocessor at the time the interrupt
occurred. The processor then goes to two fixed locations in memory to
determine the address low and address high of the interrupt software.

The operation to this point is automatic and is determined by the internal
processor logic. After the processor has properly set the address bus,
execution of the interrupt program commences. Everything which occurs
subsequently is determined by the system software.

The total interrupt software described above will consist of a complex
combination of polling and interrupt servicing routines. However, unless

23

+5V

3KQ RESISTOR

MCS650X | @ MCS6520 [—D>

@— MCsé520 [—> > 1/O PORTS

¢—— Mcsées30 =D

-

PERIPHERAL
INTERFACE
DEVICES

Interrupt Wire OR'd Hardware Configuration
from Peripheral Interface Devices to Microprocessor
FIGURE 1.9

24

A hardware prioritizing scheme is used, the actual system
interconnections will not become any more complex than that shown in
Figure 1.9.

1.3.2.5 Interrupt Request (IRQ)

As stated in Section 1.3.2, the two interrupt lines for the microprocessor
are IRQ and NMI. The requirements for proper operation of the
maskable Interrupt Request input (@) are more stringent than for the
second interrupt input, NMI. This is due primarily to the fact that NMI is
edge-sensitive. With the IRQ input, the processor will be interrupted any
time the signal on IRQ is GND (< 0.4V) and the internal Interrupt
Disable flag is cleared. The Interrupt Disable flag (I) is a single bit in
the internal Processor Status Register. The details of this register are
described in Section 3.2 of the Programming Manual.

In the processing of interrupt request from the IRQ input, the I flag is
extremely important. This is the element which assures that an interrupt
will be recognized and serviced only once for each request and only
when an interrupt is desired. This is described in detail below.

Figure 1.10 details the sequence of operations which should take place
during the servicing of an RQ interrupt. A positive or negative transition
of the signal from the peripheral device (printer, keyboard, etc.) is
detected on the edge-sensitive inputs to the peripheral interface device.
If the interrupt is enabled within the peripheral interface device, the
interrupt request output (IRQ) on this chip will go low. The interrupt
condition is latched within the peripheral interface device to allow
sufficient time for the processor to poll the interrupt sources, assuring
that the interrupt signal will not be cleared before the polling can be
completed. This latch is reset by the processor as it executes the
software associated with that interrupt. Details of this operation are
described in Section 1.4.1.2.10

The Interrupt Disable flag (I) is set automatically when the processor
recognizes an interrupt. This assures that this same interrupt will not be
recognized again. Resetting this flag can be performed manually with
an instruction in the program or automatically with a "Return from
Interrupt"” instruction. It is very important that "I" not be cleared before
the interrupt input is reset. Performing the "Clear 1" instruction too early
in the program can cause this same interrupt to be recognized again.

25

IRQ
FROM PERIPHERAL INTERFACE
DEVICE TO MICROPROCESSOR

2.4V

4V

wpr

INTERRUPT
FLAG (I)

| |
J

-~

r INTERRUPT REQUEST j INTERRUPT FLAG (I) IS SET HIGH AND
| RECOGNIZED AFTER THE INTERRUPT REQUEST IS SERVICED
COMPLETION OF CURRENT BY THE MPU.

| MPU INSTRUCTION.

Sequence to Service IRQ
FIGURE 1.10

26

wgn

UPON COMPLETION OF _
INTERRUPT ROUTINE IRQ
SHOULD BE RESET BEFORE
“I"1S RESET TO AVOID
DOUBLE INTERRUPTING

The processor will then proceed to service this as if it were a new
interrupt.

1.3.2.6 Non-Maskable Interrupt (NMI)

The NMI input to the processor is edge-sensitive. To cause an interrupt
to occur, there must be a negative transition of the signal on the NMI
input. This negative transition will cause a single interrupt to occur. After
servicing the interrupt, the processor will ignore this input until the NMI
signal goes high (> +2.4V) and then back to ground.

The response to an NMI interrupt signal cannot be disabled within the
processor. After the processor completes the instruction being executed,
it will recognize the interrupt and will proceed to service the interrupt
as described in the previous section. The proper discipline to employ in
all interrupts is for the interrupt signal to be latched until the processor
completes servicing the interrupt. This method of operation is assured if
all the interrupts are connected to the interrupt inputs of the peripheral
interface devices in the family.

Processing of multiple interrupts in a polled interrupt structure requires
that all of the interrupts be polled before executing a "Return from
Interrupt" instruction. This is necessitated by the "WIRE-OR" technique
for combining the interrupts, since no knowledge exists of which line
went to ground. If one of the interrupts is left unserviced, it will hold the
NMI signal to ground, disabling the interrupts from all other sources
since it is necessary for the NMI signal to go high (> 2.4V) and back
low again for an interrupt to occur. This is not true for the IRQ input since
this latch is level-sensitive. Performing a "Return from Interrupt" before
all RQ interrupt sources are serviced will simply cause another IRQ
interrupt to occur.

1.3.3 System Reset

One of the basic system control functions is the system RESET signal.
Whether this signal is generated automatically by external power-on
circuitry or manually from a push-button switch, the system components
must obey a fixed set of rules to assure proper system operation. This
is particularly true for the peripheral interface devices.

27

In the MCS650X-based systems, an assumption is made that RESET pins
on all peripheral interface devices and on the processor will be held
low during power-on until the supply voltages and the clocks have
stabilized. This procedure assures that the peripheral pins will remain in
a known state until the entire system is initialized and the processor is
ready to assume control of the output lines, i.e., is ready to run the
system program.

It should be mentioned that in the entire set of microcomputer chips, the
contents of latches, registers, etc. is totally random after power is
applied. On the peripheral output pins, random data can be disastrous.
The only way to force these lines to a known condition is to apply the
RESET signal. The designer can then make sure that the known condition
will not cause spurious operations in the peripheral devices. The effect
of RESET on the peripheral chips is discussed in the analysis of each chip.

In the processor, the single register which must be placed in a known
state is the program counter. This is the register which selects the
instructions to be executed. The RESET input causes the program counter
to go to the first instruction in the system program. The specific details
of this operation are discussed in Section 1.4.1.2.11.

There is one other very important function performed by the RESET input
on the peripheral interface devices. Although the recognition of the
processor interrupt signals is automatic and does not depend on
software, the sequence of operations performed by the processor to
totally service an interrupt is determined by the program. Until the
various internal registers in the processor have been initialized, the
processor is not ready to respond properly to any external interrupts.
For this reason, it is important that the system RESET disable all external
interrupt signals until they are enabled by the processor. The
programmer can then make sure that the system has been properly
initialized before the interrupts are enabled.

28

ADDRESS
BUS

~¢—— REGISTER SECTION CONTROL SECTION = =—p

RES RQ N
ABO ~—] INDEX ke
INTERRUPT
REGISTER
s LOGIC
AB1 = l l l
AB2 = INDEX
REGISTER [
X
| |———
AB3 --—
AB4 - B a STACK ©
< - POINT
= A et
< | E—
AB5 =
I INSTRUCTION
= o DECODE
ABS <] - 2
ALY <
<C
AB7 - N <>D
— K
F4
fi
ABS ~a—| 5 E <]
< ACCUMULATOR TIMING
2 A K| <+ CONTROL
Z |-
AB9 = ﬁ
=
= o) |[e—
AB10 ~=— 4
<3 PCL) } [o,
AB11 < - PCH
© PROCESS
K= Lis| * STATUS aock |
AB12 <] § = REGIPSTER GENERATOR
INPUT
K3 DATA
AB13 < & e K=
AB14 <
DATA BUS c:| INSTRUCTION
BUFFER
AB15 <] L REGISTER
T? t DBO
LEGEND: DBl
: DB2
ﬁ _ DB3 DATA
= 8 BIT LINE
DB4 BUS
DB5
| =1 BIT LINE DB6
DB7

NOTE: 1.CLOCK GENERATOR IS NOT INCLUDED ON MCS6501.
2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE MCS650X PRODUCTS

MCS650X Internal Architecture
FIGURE 1.11

29

RDY

(6501)
@1 (IN)

@ (IN)
(6501)

clock %o (N
INPUT (6502.3.4.5)

®; OUT (6501)
®, OUT (6501)
R/W
DBE

1.4 THE MICROPROCESSORS
1.4.1 The MCS6501

1.4.1.1 Introduction

The members of the MCS650X microprocessor family contain very similar
internal architectures. A block diagram of this architecture is shown in Figure
1.11. This section begins with an analysis of this block diagram, discussing the
function of the various registers, data paths, etc. A detailed discussion of the
operation of the various pins on the chip follows.

The internal organization of the processor can be split into two sections. In
general, the instructions obtained from program memory are executed by
implementing a series of data transfers in one section of the chip (register
section). The control lines which actually cause the data transfers to take place
are generated in the other section (control section). Instructions enter the
processor on the data bus, are latched into the instruction register, and are
then decoded along with timing signals to generate the register control signals.

The timing control unit keeps track of the specific cycle being executed. This
unit is set to "TO" for each instruction fetch cycle and is advanced at the
beginning of each Phase One clock pulse. Each instruction starts in TO and
goes to T1, T2, T3, etc. for as many cycles as are required to complete
execution of the instruction. Each data transfer, etc., which takes place in the
register section is caused by decoding the contents of both the instruction
register and the timing counter.

Additional control lines which affect the execution of the instructions are
derived from the Interrupt logic and from the Processor Status register. The
Interrupt logic controls the processor interface to the interrupt inputs to assure
proper timing, enabling, sequencing, etc. which the processor recognizes and
services.

The Processor Status register contains a set of latches which serve to control
certain aspects of the processor operation, to indicate the results of processor
arithmetic and logic operations, and to indicate the status of data either
generated by the processor or transferred into the processor from outside.

Since the real work of the processor is carried on in the register section of
the chip, a detailed study will be made of this section. The components are:

30

e Data Bus Buffers

e Input Data Latch (DL)

e Program Counter (PCL, PCH)

e Accumulator (A)

e Arithmetic Logic Unit (ALU)

e Stack Pointer (S)

e Index Registers (X, Y)

e Address Bus Latches (ABL, ABH)
e Processor Status Register (P)

At 1 MHz, the data which comes into the processor from the program
memory, the data memory, or from peripheral devices, appears on the
data bus during the last 100 nanoseconds of Phase Two. No attempt is
made to actually operate on the data during this short period. Instead,
it is simply transferred into the input data latch for use during the next
cycle. The data latch serves to trap the data on the data bus during
each Phase Two pulse. It can then be transferred onto one of the internal
busses and from there into one of the internal registers. For example,
data being transferred from memory into the accumulator (A) will be
placed on the internal data bus and will then be transferred from the
internal data bus into the accumulator. If an arithmetic or logic
operation is to be performed using the data from memory and the
contents of the accumulator, data in the input data latch will be
transferred onto the internal data bus as before. From there it will be
transferred into the ALU. At the same time the contents of the
accumulator will be transferred onto a bus in the register section and
from there into the second input to the ALU. The results of the arithmetic
or logic operation will be transferred back to the accumulator on the
next cycle by transferring first onto the bus and then into the
accumulator. All of these data transfers take place during the Phase
One clock pulse.

The program counter (PCL, PCH) provides the addresses which step the
processor through sequential instructions in the program. Each time the
processor fetches an instruction from program memory, the contents of
PCL is placed on the low order eight bits of the address bus and the
contents of PCH is placed on the high order eight bits. This counter is
incremented each time an instruction or data is fetched from program
memory.

31

The accumulator is a general purpose 8-bit register which stores the results
of most arithmetic and logic operations. In addition, the accumulator usually
contains one of the two data words used in these operations.

All logic and arithmetic operations take place in the ALU. This includes
incrementing and decrementing of internal registers (except PCL and PCH).
However, the ALU cannot store data for more than one cycle. If data is
placed on the inputs to the ALU at the beginning of one cycle, the result is
always gated into one of the storage registers or to external memory during
the next cycle. Each bit of the ALU has two inputs. These inputs can be tied to
various internal busses or to a logic zero; the ALU then generates the SUM,
AND, OR, etc. function using the data on the two inputs.

The stack pointer (S) and the two index registers (X and Y) each consist of 8
simple latches. These registers store data which is to be used in calculating
addresses in data memory. The specific operation of each of these is
discussed in detail in the Programming Manual.

The address bus buffers (ABL, ABH) consist of a set of latches and TTL

compatible drivers. These latches store the addresses which are used in
accessing the peripheral devices (ROM, RAM, and 1/O).

1.4.1.2 The MCS6501 Pinouts

Figure 1.12 shows a diagram of the MCS6501 microprocessor with the
various pins designated. These pins and their use in microcomputer systems
are discussed separately below.

1.4.1.2.1 Vcc, Vss — Supply Lines

The Vcc and Vss pins are the only power supply connections to the chip. The
supply voltage on pin 8 is +5.0V DC +5%. The absolute limit on the Vcc
input is +7.0V DC.

1.4.1.2.2 ABOO—AB15 — Address Bus

The address bus buffers on the MCS650X family of microprocessors are
push/pull type drivers capable of driving at least 130pF and one standard
TTL load.

The address bus will always contain known data as detailed in Appendix
A. The addressing technique involves putting an address on the address
bus which is known to be either in program sequence, on the same

32

Vss 1 40 [] «—— RES
RDY —] 2 39 [N.C.
O (IN) —] 3 38 [] «—— N.C.
RQ —»[] 4 37 1 4—— O2(IN)
VMA <-—— [5 36 [] ««——— DBE
NMI —» [] 6 35 1 N.C.
BA w-——1[7 34 [] —» R/W
vcce —]8 33 [DBO
ABO 9 32 [DB1
ABI — 10 MCS6501 31 DB2
AB2 —n 30 [DB3
4—»
AB3 12 29 [DB4
AB4 —] 13 28 [DB5
AB5] 14 27 [DBé
-+
AB6 15 26 [DB7
AB7 16 25 [AB15
ABS —17 24 [AB14
—
AB9 —] 18 23 [AB13
AB10 —19 22 AB12
AB11 —] 20 21 [Vss

N.C. = NO CONNECTION

* VMA IS CONNECTED INTERNALLY TO VCC. THE VMA SIGNAL IS NOT REQUIRED
ON THE MCS6501 AS ON THE MC6800, SINCE THE MCS6501 ALWAYS PUTS OUT
KNOWN ADDRESSES ON THE ADDRESS BUS.

MCS6501 Pinout Designations
FIGURE 1.12

33

page in program memory or at a known point in RAM. A brief study of
Appendix A will acquaint the designer with the detailed operation of this
bus.

The various processors differ somewhat in the number of address lines
provided. In particular, the MCS6504 provides thirteen address lines (ABOO
— AB12) and the MCS6503 and MCS6505 provide twelve (ABOO — AB11).
As a result, the MCS6504 can address 8,192 bytes of memory and the
MCS6503 and MCS6505 can address 4,096 bytes. This total address space
should prove to be more than sufficient for the small, cost-sensitive systems
where these devices should find their greatest application.

The specific timing of the address bus is exactly the same for all the
processors. The address is valid 300ns (at 1 MHz clock rate) into the O+ clock
pulse and stays stable until the next ®1 pulse. This specification will only
change for processors which are specified to operate at a higher clock rate.
Figure 1.13 details the relation of address bus to other critical signals.

Because of the reduced number of address lines on the 28-pin processors, it
is possible to write a program which attempts to access non-existent memory
address space, i.e., the address bits 13, 14, or 15 set to logic "1." These
upper address bits in the program will be ignored and the program will drop
into existing address space. This assumes proper memory management when
using devices of large addressing capability such that the addressed
memory space will fit within the constraints of a device with smaller available
memory addressing capability.

1.4.1.2.3 DBO—DB7 — Data Bus

The processor data bus is exactly the same for the processors currently
available and for the software-compatible processors which will be
introduced in the near future. All instructions and data transfers between the
processor and memory take place on these lines. The buffers driving the data
bus lines have full "three-state” capability. This is necessitated by the fact
that the lines are bi-directional.

Each data bus pin is connected to an input and an output buffer, with the
output buffer remaining in the "floating” condition except when the processor
is transferring data into or out of one of the support chips. All inter-chip data
transfers take place during the Phase Two clock pulse. During Phase One the
entire data bus is "floating."

34

€Ll 3aNald

wo.bpiq Buiwy) wayskg X0S$9SOW

ALIAILDY TVWION

AINO TOS9SOW NO F19V1IVAV SI DNAS s
AINO LOS9SOW NO F1VIIVAY S| Vi«

IONINDIS dN-L3VLS
_ IWN

|

7 3% JNAS

N v
_ _ _ (4oL
_

SN4d viva

SN4 Ss3Jaav

7/ M/

T

A

ASLY

35

The data bus buffer is a push/pull driver capable of driving 130pF and
one standard TTL load at the rated speed. At a 1 MHz clock rate, the
data on the data bus must be stable 100ns before the end of Phase Two.
This is true for transfers in either direction. Figure 1.13 details the
relationship of the data bus to other signals.

1.4.1.2.4 R/W — Read/Write

The Read/Write line allows the processor to control the direction of data
transfers between the processor and the support chips. This line is high
except when the processor is writing to memory or to a peripheral
interface device.

All transitions on this line occur during the Phase One clock pulse
(concurrent with the address lines). This allows complete control of the
data transition which takes place during the Phase Two clock pulse.

The R/W buffer is similar to the address buffers. They are capable of

driving 130pF and one standard TTL load at the rated speed. Again,
Figure 1.13 details the relative timing of the R/W line.

1.4.1.2.5 DBE — Data Bus Enable

On the MCS6501, a data bus enable signal is provided to allow external
enabling of the data bus. This line is connected directly to the Phase Two
input clock signal for any normally operating system and is detailed in
Figure 1.13.

The DBE signal affects only the data bus buffers. It does not affect
processor timing and has no effect on the address of the R/W lines.

This input is provided primarily for use in systems which use non-family
devices for either the memory or the peripheral interface functions. In
particular, it allows the data bus to be enabled for a period longer than the
Phase Two clock pulse for systems requiring greater processor hold time on
the data bus. This application is covered in greater detail in Chapter 2.

1.4.1.2.6 YMA — Valid Memory Address

As mentioned above, the MCS650X family of microprocessors
always puts known addresses on the address bus and, as a result,
does not require a VMA signal. However, to remain pin-compatible
with the MC6800, the VMA pin is connected internally to the Vcc

36

power supply. This assures operation in systems in which VMA is
part of the chip-select function. This pin is not available on the 28-
pin processors.

1.4.1.2.7 BA — Bus Avdilable

The bus available signal is provided on the MCS6501 to signal to
a DMA controller, etc. that the processor is stopped and that the
data and address busses can be used for other than processor
program execution.

This operation is similar to that of the MC6800 bus available signal
except that much less time is required to stop the MCS6501 since
the MC6800 requires completion of the current instruction before
stopping. If no write operation takes place during the cycle in which
the RDY signal goes low, the BA will go high (> 2.4V) during Phase
Two of the same cycle. In general, BA will go high during the first
Phase Two pulse during which the R/W line is high. For the current
processors, the maximum time is 32 cycles.

1.4.1.2.8 RDY — Ready

The RDY input delays execution of any cycle during which the RDY
line is pulled low. This line should change during the Phase One
clock pulse. This change is then recognized during the next Phase
Two pulse to enable or disable the execution of the current internal
machine cycle. This execution normally occurs during the next Phase
One clock; timing is shown in Figure 1.13.

The primary purpose of the RDY line is to delay execution of a
program fetch cycle until data is available from memory. This has
direct application in prototype systems employing light-erasable
PROMs or EAROMs. Both of these devices have relatively slow
access times and require implementation of the RDY function if the
processor is to operate at full speed. Without the RDY function a
reduction in the frequency of the system clock would be necessary.

The RDY function will not stop the processor in a cycle in which a
WRITE operation is being performed. If the RDY line goes from high
to low during a WRITE cycle the processor will execute that cycle
and will then stop in the next READ cycle (R/W = 1).

37

1.4.1.2.9 NMI — Non-Maskable Interrupt

The NMI input, when in the interrupted state, always interrupts the
processor after it completes the instruction currently being executed. This
interrupt is not "maskable,” i.e., there is no way for the processor to
prevent recognition of the interrupt.

The NMI input responds to a negative transition. To interrupt the
processor, the NMI input must go from high (> +2.4V) to low (< +0.4V).
It can then stay low for an indefinite period without affecting the
processor operation and without another interrupt. The processor will not
detect another interrupt until this line goes high and then back to low. The
NMI signal must be low for at least two clock cycles for the interrupt to
be recognized, whereupon new program count vectors are fetched.

1.4.1.2.10 IRQ — Interrupt Request

The interrupt request (IRQ) responds in much the same manner as NMI.
However, this function can be enabled or disabled by the interrupt inhibit
bit in the processor status register. As long as the I flag (interrupt inhibit
flag) is a logic 1, the signal on the IRQ pin will not affect the processor.

The IRQ pin is not edge-sensitive. Instead, the processor will be
interrupted as long as the I flag is a logic "0" and the signal on the
IRQ input is at GND. Because of this, the IRQ signal must be held low
until it is recognized, i.e., until the processor completes the instruction
currently being executed. If 1 is set when IRQ goes low, the interrupt
will not be recognized until I is cleared through software control. To
assure that the processor will not recognize the interrupt more than
once, the I flag is set automatically during the last cycle before the
processor begins executing the interrupt software, beginning with the
fetch of program count.

The final requirement is that the interrupt input must be cleared before
the I flag is reset. If there is more than one active interrupt driving these
two lines (OR'd together), the recommended procedure is to service and
clear both interrupts before clearing the 1 flag. However, if the
interrupts are cleared one at a time and the I flag is reset after each,
the processor will simply recognize any interrupts still active and will
process them properly but more slowly because of the time required
to return from one interrupt before recognizing the next. If the

38

procedure recommended above is followed, each interrupt will be
recognized and processed only once. Figure 1.14 provides several
examples of interrupts, microprocessor recognition of each interrupt (IRQ
and NMI), and processor selection of interrupts during overlapped
requests.

- UJUUUYUUUUYUUUUL
'] [A I
v IR S S I B

Examples of Interrupt Recognition by MCS650X
FIGURE 1.14

IR

2]

N

2

Each major event affecting the microprocessor is numbered in the figure
with the corresponding explanations below.

EVENT
NUMBER SYSTEM ACTIVITY

1. Processor is executing from main program and IRQ goes to
low state.

2. Upon completion of current instruction, the processor
recognizes the interrupt, stores the contents of PC and P onto
the stack and then sets I during the fetch of the interrupt
vector.

3. After servicing the interrupt, IRQ should be reset before
resetting the interrupt mask bit to avoid double interrupting.

4. Before the processor resumes normal main program execution
the interrupt mask bit will be reset low.

5. NMI now goes low, signalling a non-maskable interrupt

request.

39

EVENT

NUMBER

6.

10.

11.

12.

13.

SYSTEM ACTIVITY

The NMI interrupt is recognized and serviced in the same
manner as IRQ.

The processor has resumed normal operation when NMI again
goes low requesting an interrupt.

The interrupt mask bit is set high in response to the NMI
request.

Here IRQ has gone low to signal an interrupt request. This
request is ignored since the NMI interrupt is being serviced
and the interrupt mask is set.

The interrupt mask bit is reset after servicing the NMl interrupt.

The processor is now able to recognize the IRQ signal, which
is still low, and does so by setting the interrupt mask bit.

During the servicing of IRQ, NMI goes from high to low. The
processor then completes the current instruction and abandons
the IRQ interrupt to service NMI. NMI is serviced regardless
of the state of the interrupt mask bit.

After completing the NMI interrupt routine, the processor will
resume execution of the IRQ routine, even though IRQ has
subsequently gone high.

1.4.1.2.11 RES — Reset

The RES line is used to initialize the microprocessor from a power-
down condition. During the power-up time this line is held low, and
writing from the microprocessor is inhibited. When the line goes high,
the microprocessor will delay 6 cycles and then fetch the new program
count vectors from specific locations in memory (PCL from location
$FFFC and PCH from location $FFFD). This is the start of the user's
code. It should be assumed that any time the reset line has been pulled
low and then high, the internal states of the machine are unknown and
all registers must be re-initialized during the restart sequence. Timing
for the reset sequence is shown in Figure 1.13.

40

1.4.2 The MCS6502

1.4.2.1 Product Characteristics

The MCS6502 is very similar to the MCS6501 described in detail in the
previous section. It provides a full 16-pin address bus and therefore
addresses a full 65,536 words in memory. It also has the same data bus,
R/W and RDY available on the MCS6501.

Figure 1.15 illustrates the pin configuration of the MCS6502.
The differences between the two devices are as follows:

1. The MCS6502 has the oscillator and clock driver on-chip, thus
eliminating the need for an external high-level two-phase clock
generator.

2. The MCS6502 generates a SYNC signal instead of the bus
available (BA) signal. The SYNC signal is described in detail
below.

3. Pin 5, corresponding to the MC6800 VMA signal, is not
connected.

4. The internal data bus enable function is connected directly to the

phase two clock on the chip. Therefore pin 36 on the MCS6502
is not connected.

1.4.2.2 Device Timing — Requirements and Generation

The MCS6501, in maintaining total bus compatibility with the MC6800
product family, requires a 5-volt two-phase clock. The MCS6502,
however, can be used with an externally generated time base consisting
of either a TTL level single-phase clock, crystal oscillator or RC network.

Figures 1.16 and 1.17 show the configuration for setting the frequency
of oscillations with a crystal or with an RC network.

Figure 1.16 displays the crystal mode of operation in which the frequency
of oscillation is set by the crystal operating in conjunction with the RC
network. Figure 1.17 displays the same interconnects as in the crystal
mode of time base generation, with the crystal removed from the

41

Vss —

RDY — [

@1 (OUT) -— [

RQ — [
C

[

NMI — []

AB1
AB2
AB3
AB4
AB5
-+—

o
AB7
AB8

AB9
AB10

AB11

OO000n0no0nnnonaonni

VO ®© N o0 O A WON =

_ =
w N = O

14
15
16
17
18
19
20

MCS6502

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

21

] <«—— RES

—] ——— ®(0uT)
—] «——— S.O.

—] <——— Dg(IN)
N.C.
N.C.

|

R/W
DBO
DB1
DB2
DB3

|

DB4
DB5
DB6
DB7
AB15
AB14

—>
AB13

AB12

ININININININIRININIRIRIRIRIRin

Vss

N.C. = NO CONNECTION

MCS6502 Pinout Designation

FIGURE 1.15

42

7404
39 SYSTEM @9
37 PIN
37 @ (IN)
] CRYSTAL 39 @, (OUT)

MCS6502 Parallel Mode Crystal Controlled Oscillator
FIGURE 1.16a

7404

39

SYSTEM ®g

37

PIN

37 ®g (IN)
39 ®, (OUT)

CRYSTAL

Vce

MCS6502 Series Mode Crystal Controlled Oscillator
FIGURE 1.16b

MCS6502 Time Base Generation — Crystal Controlled

FIGURE 1.16
7404
39 _T_ SYSTEM 5
C
f Rf
¥ PIN
37 g (IN)
39 ®, (OUT)

MCS6502 Time Base Generator — RC Network
FIGURE 1.17

43

circuit. Values of the feedback resistor, Rr and feedback capacitor, Ce
will be different for the crystal mode versus the RC mode. While the
detail specifications for values of Rr and Cr are found in the data sheet
for the MCS6502, clock timing can be generated by use of combinations
of Re in the range of 0 to 500K ohms and Cr in the range of 2 to 12pF.
The reader is referred to the MCS6502 data sheet for a detailed
description of the application of RC networks and crystal oscillators for
generation of the time base in these modes of operation.

The MCS6500 bus discipline described in Section 1.3.1 is applicable
wherever the oscillator is located. For data transfers to be properly
carried out between the processor and the various support chips in the
systems, the timing of the clocks controlling the internal processor
operations must be very close to that of the phase two clock out of pin
39 of the processor with no more than two TTL delays for clock buffering.
It is important in systems which drive the clock generators with a TTL
square wave that this input waveform not be used to control the
peripheral chips unless care is taken to assure proper timing of the phase
two clock being used in these support chips.

1.4.2.3 SYNC Signal

In the MCS6502, a SYNC signal is provided to identify those cycles in
which the processor is doing an OP CODE fetch. The SYNC line goes high
during phase one of an OP CODE fetch and stays high for the remainder
of that cycle. If the RDY line is pulled low during the phase one clock pulse
in which the SYNC line went high, the processor will stop in its current
state. It remains in that state until the RDY line goes high. In this manner,
the SYNC signal can be used to control RDY to cause single-instruction
execution. This application is discussed in detail in Chapter 2. Figure 1.18
contains a timing diagram for this signal.

1.4.2.4 5.0. — Set Overflow

This pin sets the overflow flag on a negative transition from TTL one to
TTL zero. This is designed to work with a future |/O part and should not
be used in normal applications unless the user has programmed for the
fact the arithmetic operations also affect the overflow flag.

44

o VUUUUULUUUUUIUL

R/W _]1 2

SYNC

M1

During a microprocessor write cycle, R/W signal low, the SYNC
pulse does not occur.

The R/W signal goes high to signal the beginning of a
microprocessor read cycle.

At the beginning of the read cycle a SYNC pulse will be
generated. This pulse will last for one cycle time. The SYNC pulse
indicates that the microprocessor is reading an OP CODE from
the memory field. In this case the SYNC pulse is high for one
cycle as the processor reads the OP CODE.

The processor outputs another SYNC pulse indicating it has
completed the previous instruction and is fetching another OP
CODE. In this case three more cycles are needed to complete
this instruction before the next SYNC pulse is generated. The
SYNC pulse is aperiodic in that its generation is a function of the
program and the resultant lengths of the instructions and
addressing modes.

MCS6502 SYNC Signal
FIGURE 1.18

45

The operation of each function is exactly the same as on the MCS6502.

Features MCS6503 MCS6504 MCS6505
Addressing 4096 Bytes 8192 Bytes 4096 Bytes
Capability (ABOO-AB11) (ABOO-AB12) (ABOO—-AB11)

Interrupt o . _

Request IRQ, NMI IRQ IRQ
Capability

"Ready" Signal — — RDY
Timing Single Phase Single Phase Single Phase
Signals TTL Level @o(IN), | TTL Level @o(IN), | TTL Level @of(IN),

Required or Crystal or RC | or Crystal or RC | or Crystal or RC

Other . L L
Control RES, R/W RES, R/W RES, R/W
Signals

Functional Features of MCS6503, MCS6504, MCS6505
FIGURE 1.19

46

Figure 1.20 illustrates the pin designation for the three processors,
indicating the tradeoffs that exist between control signals and addressing
capability due to pinout constraints. Like the MCS6502, the 28-pin
microprocessors dlso have the on-the-chip oscillator and clock drivers.
Figures 1.21 and 1.22 display the circuitry necessary to generate the
time base in the crystal mode and RC network mode respectively. Specific
details on the values of feedback resistance, RF and feedback
capacitance, Cr can be found in the appropriate data sheet.

47

S0S9SOW
6av O] S1 vi [sav
oLav O 91 €1 [csav
Lay 0 £t ZL [9av
(90 O 81 LL Qsav
9ga O 61 oL @Avay
sga oz 6 [Oeav
vaa 1z 8 [bcav
€ga e yanit:\
zaa O ec 9 boay
l9a g ve S [0 A
09a O sc v [ol
WY O 92 € QAQy
(NO] £z Z [0 ssA
(1no)¢op [82 L OS2y

0c'l 34nDl4
suolypubisaq 4nould GOSPSOW ‘P 0S9SOW ‘€0S9SOW

¥0S9SOW
oLgv O st vl [eav
LLav o 91 €1 [8av
ziav 0 21 AN n PZ:\7
(90 81 Ll O9gv
99a [61 oL [sav
sd9d O oz 6 Ovav
vaa g Lz 8 peav
€9a O zz £ [Qzav
zaa O ez 9 Aty
l9a O ve s poav
094 O sz ¥ [0 2A
MY O 92 € 0o
(N0 O £ Z [ssA
(1no)op] 82 L O s:

£059SOW
6av O S vl [sav
oLav O 91 €1 [sav
Ly 0 Z1 Z1L pogy
(94 8l LL [sav
9da [61 oL Avay
sga O oz 6 peay
vaa O 1z 8 peav
€90 O zz £ [Qlav
zaa ez 9 poav
l9a O ve S [A
094 O sz ¥ [IWN
MY O 92 € 0o
(N0 O £ Z [ssA
(1no)¢p] 82 L [0Sy

48

7404
28 SYSTEM @9
27
Do (IN)
] CrRYSTAL ®, (OUT)

MCS65083, 4, 5 Parallel Mode Crystal Controlled Oscillator

7404

28

SYSTEM ®g

27

PIN

27 ®g (IN)
28 ®, (OUT)

CRYSTAL
Vcc

MCS6503,4,5 Series Mode Crystal Controlled Oscillator

MCS6503, MCS6504, MCS6505 Time Base Generation
Crystal Controlled

FIGURE 1.21
7404
28 _T_ SYSTEM 5
C
f Rf
27 PIN
27 ®g (IN)
28 ®, (OUT)

MCS6503, MCS6504, MCS6505 Time Base Generation
RC Network
FIGURE 1.22

49

1.5 PERIPHERAL INTERFACE DEVICE — MCS6520

1.5.1 Introduction

The MCS6520 is a direct pin for pin replacement for the Motorola
MC6820 Peripheral Interface Adapter, the "PIA". As such, it meets all
of the "PIA" electrical specifications and is totally hardware compatible
with the MC6820.

The MCS6520 is an |/O device which acts as an interface between the
microprocessor and peripherals such as printers, displays, keyboards,
etc. The prime function of the MCS6520 is to respond to stimulus from
each of the two worlds it is serving. On the one side, the MCS6520 is
interfacing with peripherals via two eight-bit bi-directional peripheral
data ports. On the other side, the device interfaces with the
microprocessor through an eight-bit data bus; this is the same data bus
discussed at length in Section 1.3.1. It is, therefore, simplest to view the
basic function of the MCS6520 as in the block diagram of Figure 1.23.

4 : N

<> CONTROL

8 BIT 8 BIT
pata sus < > DATA PORT

PERIPHERAL
MICROPROCESSORS J \. DEVICES —
MCS650X MCS6520 PRINTERS,
DISPLAYS, ETC.
8 BIT
CONTROL <> D DATA PORT
IK<_—> CONTROL
\ I /

Basic MCS6502 Interface Diagram
FIGURE 1.23

50

In addition to the lines described above, the MCS6520 provides four
interrupt input/peripheral control lines and the logic necessary for
simple, effective control of peripheral interrupts. No external logic is
required for interfacing the MCS650X microprocessor to most
peripheral devices.

The functional configuration of the MCS6520 is programmed by the
microprocessor during systems initialization. Each of the peripheral data
lines is programmed to act as an input or output and each of the four
control /interrupt lines may be programmed for one of four possible
control modes. This allows a high degree of flexibility in the overall
operation of the interface.

Some of the more important features of the MCS6520 are the
following:

o Compatibility with the MCS650X microprocessors.

e FEight-bit bi-directional data bus for communication with the
microprocessor.

e Two eight-bit bi-directional ports for interface to peripherals.

e Two programmable control registers.

e Two programmable Data Direction Registers.

e Four individually controlled interrupt input lines — two usable
as peripheral control outputs.

e Handshake control logic for input and output peripheral
operation.

e High impedance three-state and direct transistor drive
peripheral lines.

® Program controlled interrupt and interrupt mask capability.

1.5.2 Organization of the MCS6520

Figure 1.25 contains a block diagram of the MCS6520 showing the
internal registers and data paths and the various inputs and outputs on
the device. This section contains a general description of the internal
organization of the device along with a discussion of how the various
registers affect one another. The following sections discuss the details

51

Vss
PAO
PA1

PA2

A
fl'II_II'II'II_II_II'II_II_II_II_II_II_II_II'II'I\I'I

A O w N

VO © N o O

10
11

12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
MCS6520 31
30
29
28
27
26
25
24
23
22

21

] 4——— CAl
—] «——» CA2
1 ——» RQA
—] ——» IRQB
] «——— RSO

] «——— RSI

] «—— RES

:l\ DO

— D1
— D2
] D3
— D4
1 D5
— Dé

:I/ D7
] <«——— ENABLE
] «—— CS2
] «—— CS3
] 4—— CS1

] 4— R/W

MCS6520 Pinout Designations Peripheral Interface Adaptor

FIGURE 1.24

52

RQA <& INTERRUPT STATUS [CA1
*—V CONTROL A A2
CONTROL
—_> REGISTER A >
(CRA) DATA DIRECTION
o REGISTER A
DO < > (DDRA)
D1 <
D2 < U
D ©88) L PAT
Die | |, pige
g? pid)| ReGiSTER A Y| PR a3
(ORA) BUFFER > PA4
|| A [PAS
— L PAG
€ PA7
DATA INPUT
REGISTER |—
(DIR) la— PBO
L PB1
PERIPHERAL el
— R%§$§JB N PERIPHERAL [o O o
v INTERFACE
(ORB) BUFFER [PB4
B | PB5
—] > PBS
1 —P | PB7
cs2 —p
CS3 — CHIP ﬁ
RO —we SEECT INPUT BUS N
RS —> R/W .~ J[¥| DATA DIRECTION
R/W —p| CONTROL CONTROL REGISTER B
ENABLE —> [=) ReGisTer B > (DDRB)
RESET (CRB)
L» INTERRUPT STATUS [CBI
IRQE - CONTROL B B2

MCS6520 Internal Architecture
FIGURE 1.25

53

of the inputs and outputs on the chip, along with a detailed discussion
of the operation of each register. The final section discusses the
MCS6520 from an operational viewpoint, describing the interaction of
the register bits, input/output lines, etc.

The MCS6520 is organized into two independent sections referred to
as the "A Side" and the "B Side." Each section consists of a Control
Register (CRA, CRB), Data Direction Register (DDRA, DDRB), Output
Register (ORA, ORB), Interrupt Status Control and the buffer necessary
to drive the Peripheral Interface busses.

1.5.2.1 Data Input Register

When the microprocessor writes data into the MCS6520, the data which
appears on the data bus during the Phase Two clock pulse is latched
into the Data Input Register. It is then transferred into one of six internal
registers of the MCS6520 after the trailing edge of Phase Two. This
assures that the data on the peripheral output lines will not "glitch," i.e.,
the output lines will make smooth transitions from high to low or from
low to high and the voltage will remain stable except when it is going
to the opposite polarity.

1.5.2.2 Control Registers (CRA and CRB)

Figure 1.29 illustrates the bit designation and functions in the Control
Registers. The Control Registers allow the microprocessor to control the
operation of the interrupt lines (CA1, CA2, CB1, CB2), and peripheral
control lines (CA2, CB2). A single bit in each register controls the
addressing of the Data Direction Registers (DDRA, DDRB) and the
Output Registers (ORA, ORB) discussed below. In addition, two bits (bit
6 and 7) are provided in each control register to indicate the status of
the interrupt input lines (CA1, CA2, CB1, CB2). These interrupt status bits
(IRQA, IRQB) are normally interrogated by the microprocessor during
the interrupt service program to determine the source of an active
interrupt. These are the interrupt lines which drive the interrupt input
(IRQ, NMI) of the microprocessor. The other bits in CRA and CRB are
described in the discussion of the interface to the peripheral device
(Section 1.5.4).

The various bits in the control registers will be accessed many times
during a program to allow the processor to enable or disable interrupts,
change operating modes, etc. as required by the peripheral device
being controlled.

54

1.5.2.3 Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each line
in the 8-bit Peripheral I/O port to act as either an input or an output.
Each bit in DDRA controls the corresponding line in the Peripheral A port
and each bit in DDRB controls the corresponding line in the Peripheral
B port. Placing a "O" in the Data Direction Register causes the
corresponding Peripheral 1/O line to act as an input. A "1" causes it to
act as an output.

The Data Direction Registers are normally programmed only during the
system initialization routine which is performed in response to a Reset
signal. However, the contents of these registers can be altered during
system operation. This allows very convenient control of some peripheral
devices such as keyboards.

1.5.2.4 Peripheral Output Registers (ORA, ORB)

The Peripheral Output Registers store the output data which appears
on the Peripheral 1/O port. Writing a "0" into a bit in ORA causes the
corresponding line on the Peripheral A port to go low (< 0.4V) if that
line is programmed to act as an output. A "1" causes the corresponding
output to go high. The lines of the Peripheral B port are controlled by
ORB in the same manner.

Addressing of these registers is discussed in Section 1.5.3.4.

1.5.2.5 Interrupt Status Control

The four interrupt/peripheral control lines (CA1, CA2, CB1, CB2) are
controlled by the Interrupt Status Control (A, B). This logic interprets the
contents of the corresponding Control Register, detects active transitions
on the interrupt inputs and performs those operations necessary to
assure proper operation of these four peripheral interface lines. The
operation of these lines is described in detail in Section 1.5.4.2.

1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB)

The Buffers which drive the peripheral |/O ports and the data bus
provide the current and voltage drive necessary to assure proper
system operation and to meet the device specifications.

55

1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors

The MCS6520 interfaces to the microprocessor with an 8-bit bi-
directional data bus, 3 chip-select lines, 2 register-select lines, 2
interrupt request lines, read /write line, enable line and reset line.

1.5.3.1 Data Bus (D0O-D7)

The 8-bit, bi-directional data bus allows the transfer of data between
the microprocessor and the MCS6520. The data bus output drivers are
3-state devices that remain in the high impedance state except when
the microprocessor reads data from the peripheral adapter. This data
bus is the same as discussed in Section 1.3.1, "Bus Structure."

1.5.3.2 Enable (E)

The Enable input is the only microprocessor interface timing input on the
peripheral interface device. All data transfers into and out of the
MCS6520 are controlled by this signal. In normal operation, this input
should be connected to the phase two clock signal. In the case of the
MCS6501, this is the @2 clock generated external to the microprocessor
chip. For on-chip oscillator products (MCS6502, MCS6503, MCS6504
and MCS6505), the enable pulse becomes ®2(OUT).

1.5.3.3 Read/Write (R/W)

This signal is generated by the microprocessor to control the direction
of data transfers on the data bus. A low (< 0.4V) on this line enables
the input buffers (microprocessor Write) and data is transferred from
the microprocessor to the MCS6520 under control of Enable input if the
device has been chip-selected. A high on the R/W line allows the
MCS6520 to transfer data to the data bus buffers. The data bus buffers
are enabled when the proper chip-select and Enable Signals are
present. Figure 1.26 illustrates the Read /Write timing.

1.5.3.4 Chip Select Lines (CS1, €52, CS3)

These three inputs allow the microprocessor to select the proper
peripheral interface device. CS1 and CS2 must be high and CS3 must
be low for selection of the device. Data transfers are then performed
under control of the Enable and R/W signals. These lines are normally
connected to the address lines on the microprocessor, either directly or
through address decoders.

56

— 180 |
[r— 2.4V
ENABLE /
L/ 0.4V
—» 300 [E—
2.4V
ADDRESS
0.4V
—> 20
2.4V
DATA BUS
0.4v
PERIPHERAL 2.4V
DATA (A OR B) 04V
[—— 700 —P

Microprocessor Interface Timing — Read
FIGURE 1.26a

4— 470

2.4V
ENABLE A /
0.4v

—»] 180 [~ —»{ 100 [
2.4v
ADDRESS X
0.4V
130 |-—
2.4V
READ/WRITE /
0.4v
— 20
2.4V
DATA BUS
0.4V
—» 100 |—
2.4v
PERIPHERAL
DATA (A OR B) o4y

*NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Microprocessor Interface Timing — Write
FIGURE 1.26b

57

As described in Section 1.5.5.2, a single bit in each Control Register (CRA
and CRB) controls access to the Data Direction Register or the Peripheral
interface. If bit 2 in the Control Register is a "1," a Peripheral Output register
(ORA, ORB) is selected, and if bit 2 is a "0," the Data Direction Register is
selected. Internal registers are selected by the Register Select lines (RSO,
RS1) and the Data Direction Register Access Control bit as follows:

Data Direction
Register Access

Control Bit
RS1 RSO CRA-2 CRB-2 Register Selected
0] 0 1 — Peripheral Interface A
(See Section 1.5.3.5.1)
0] 0 0] — Data Direction Register A
0 1 — — Control Register A
1 0 — 1 Peripheral Interface B
(See Section 1.5.3.5.2)
1 0 — 0 Data Direction Register B
1 1 — — Control Register B

If the programmer wishes to write the data into DDRA, ORA, DDRB, or ORB,
he must first set bit 2 in the proper Control Register. The desired register can
then be accessed with the address determined by the address interconnect
technique used. (See Chapter 2, Section 2.3.1 for a discussion of addressing
in MCS650X systems.)

1.5.3.5 Register Select Lines (RSO), (RS1)

These two register select lines are used to select the various registers inside
the MCS6520. These input lines are used in conjunction with internal control
registers to select a particular register that is to be accessed by the
microprocessor. These lines are normally connected to microprocessor
address output lines. These lines operate in conjunction with the chip-select
inputs to allow the microprocessor to address a single 8-bit register within
the microprocessor address space. This register may be an internal register
(CRA, ORA, etc.) or it may be a Peripheral |/O port.

The processor can write directly into the Control Registers (CRA, CRB), the
Data Direction Registers (DDRA, DDRB) and the Peripheral Output
Registers (ORA, ORB). In addition, the processor can directly read the

58

contents of the Control Registers and the Data Direction Registers. Accessing
the Peripheral Output Register for the purpose of reading data back into
the processor operates differently on the ORA and the ORB registers and
therefore are discussed separately below.

1.5.3.5.1 Reading the Peripheral A I/O Port

The Peripheral A 1/O port consists of 8 lines which can be programmed to
act as inputs or outputs. When programmed to act as outputs, each line
reflects the contents of the corresponding bit in the Peripheral Output
Register. When programmed to act as an input, these lines will go high or
low depending on the input data.

The Peripheral Output Register (ORA) has no effect on those lines
programmed to act as inputs. The 8 lines of the Peripheral A 1/O port
therefore contain either input or output data depending on whether the line
is programmed to act as an input or an output. Figure 1.27a illustrates the
interface timing.

Performing a Read operation with RS1 = 0, RSO = 6 and the Data Direction
Register Access Control bit (CRA-2) = 1, directly transfers the data on the
Peripheral A 1/O lines into the processor (via the data bus). This will contain
both the input and output data. The processor must be programmed to
recognize and interpret only those bits which are important to the particular
peripheral operation being performed.

Since the processor always reads the Peripheral A |/O port pins instead of
the actual Peripheral Output Register (ORA), it is possible for the data read
into the processor to differ from the contents of the Peripheral Output
Register for an output line. This is true when the 1/O pin is not allowed to go
to a full +2.4V DC when the Peripheral Output register contains a logic 1. In
this case, the processor will read a O from the Peripheral A pin, even though
the corresponding bit in the Peripheral Output register is a 1.

1.5.3.5.2 Reading the Peripheral B 1/O Port

Reading the Peripheral B 1/O port yields a combination of input and output
data in a manner similar to the Peripheral A port. However, data is read
directly from the Peripheral B Output Register (ORB) for those lines
programmed to act as outputs. It is therefore possible to load down the
Peripheral B Output lines without causing incorrect data to be transferred
back into the processor on a Read operation. Figure 1.27b illustrates the
timing.

59

b/Z’L 34Nl
Buiwi 9dp4s94u) v [pIaYdiIdy

‘NOILYIIdO ZHW L JO4 DISU NI J¥V @3IdID3dS SAWIL 11V FLONx 3IAOW INVHSANVH
(0=¥OV =¢€2V 'L =5IV)

\ L -

—»{ sz [

LvD
| —{ 510" | |t—
30OW LNdLNO 3S1Nd [Ale}
(0 =¥2V ‘L = €DV = 5OV)

srio*1

viva
1Vd3IHdId3d

0z |a—
v S f sng viva
—» 00l |[@— ([F
JJ
\ LIM/avay
{ C
JJ
x ss3yaav
{ C
JJ
—» 08l |@—
\ / \ J19VN3

60

sroz

942’1 34N
Buiwiy eopyisul g

ol
[pJaydriag

‘NOILVIIdO ZHW L JO4 D3SYU NI 33V d3HIDIMS SIWIL TV *JLON

(3AOW DIVHSANVH)
(0=¥29=¢€D9'L =5Dd) ¢dD

14D

sro'L

— sro'1L

Iv_wno._

-

(3aow 1NdLNO 3$1Nd)
(0=¥D29"L =€29=¢5D9) TD

(3aOW LNdLNO TYWION) Z4D
ANV VLvd 1V¥3HdI¥3d

—(0Z |
VA % sNg viva
—| 00l Tl
\ M/
— o€l
VA ss3¥aav
—»| 08l |-
/N

\ J19VN3

61

+5V | | +5V +5V
| |
PASSIVE | |
PULL-UP | |
RESISTOR
| ourpur I §
| TO
| : CHIP
FROM >
CHIP ! I > |'
’—_| | INPUT | ’-_l
L | | L
= | I =
MCS6520 | | MCS6520
______ _ L - _
OUTPUT MODE INPUT MODE
— RESISTOR PULL-UP
REMAINS IN CIRCUIT
Peripheral 1/O Port A Buffer
FIGURE 1.28a
______ - r——————
+5V | | +5V
| |
| |
-] | |
| OuTPUT |
FROM | TO
CHIP I CHIP

-]

1

T

MCS6520 MCS6520
______ . L -
OUTPUT MODE INPUT MODE

— NO PULL-UP
IN CHIP

Peripheral 1/O Port B Buffer
FIGURE 1.28b

62

The details of the Peripheral A and Peripheral B ports will be discussed in
the next section under the discussion of the interface between the MCS6520
and the Peripheral Devices.

1.5.3.6 Reset (RES)
The active low Reset line resets the contents of all MCS6520 registers to a

logic zero. This line can be used as a power-on reset or as a master reset
during system operation.

1.5.3.7 Interrupt Request Line (IRQA, IRQB)

The active low Interrupt Request lines (IRQA and @) act to interrupt the
microprocessor either directly or through external interrupt priority circuitry.
These lines are "open source" (no load device on the chip) and are capable
of sinking 1.6 milliamps from an external source. This permits all interrupt
request lines to be tied together in a "wired-OR" configuration. The "A" and
"B" in the titles of these lines correspond to the "A" peripheral port and the
"B" peripheral port. Hence each interrupt request line services one peripheral
data port.

Each Interrupt Request line has two interrupt flag bits which can cause the
Interrupt Request line to go low. These flags are bits 6 and 7 in the two
Control Registers. These flags act as the link between the peripheral interrupt
signals and the microprocessor interrupt inputs. Each flag has a
corresponding interrupt disable bit which allows the processor to enable or
disable the interrupt from each of the four interrupt inputs (CA1, CA2, CB1,
CB2).

The four interrupt flags are set by active transitions of the signal on the
interrupt input (CA1, CA2, CB1, CB2). Controlling this active transition is
discussed in the next section under the discussion of the interface between the
MCS6520 and the peripheral device.

1.5.3.7.1 Control of IRQA

Control Register A bit 7 is always set by an active transition of the CAl
interrupt input signal. Interrupting from this flag can be disabled by setting
bit O in the Control Register A (CRA) to a logic O. Likewise, Control Register
A bit 6 can be set by an active transition of the CA2 interrupt input signal.
Interrupting from this flag can be disabled by setting bit 3 in the Control
Register to a logic O.

63

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Output Register
A" operation. This is defined as an operation in which the proper chip-select
and register-select signals are provided to allow the processor to read the
Peripheral A 1/O port.

1.5.3.7.2 Control of IRQB

Control of IRQB is performed in exactly the same manner as that described
above for IRQA. Bit 7 in CRB is set by an active transition on CB1; interrupting
from this flag is controlled by CRB bit O. Likewise, bit 6 in CRB is set by an
active transition on CB2; interrupting from this flag is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B Output Register”
operation.

SUMMARY:
IRQA goes low when CRA-7 = 1 and CRA-0 = 1 or when CRA-6 = 1 and CRA-3 = 1.
IRQB goes low when CRB-7 = 1 and CRB-0 = 1 or when CRB-6 = 1 and CRB-3 = 1.

The use of these interrupt flags and interrupt disable bits is discussed in more
detail in Section 1.5.4.

It should be stressed at this point that the flags act as the link between the

peripheral interrupt signals and the processor interrupt inputs. The interrupt
disable bits allow the processor to control the interrupt function.

1.5.4 Interface Between MCS6520 and Peripheral Devices

The MCS6520 provides 2 8-bit bi-directional ports and 4 interrupt/control
lines for interfacing to peripheral devices. These ports and the associated
interrupt/control lines are referred to as the "A" side and the "B" side. Each
side has its own unique characteristics and will therefore be discussed
separately below.

1.5.4.1 Peripheral 1/O Ports

The Peripheral A and Peripheral B 1/O ports allow the microprocessor
to interface to the input lines on the peripheral device by loading data
into the Peripheral Output Register. They also allow the processor to
interface with the peripheral device output lines by reading the data on

64

the Peripheral Port input lines directly onto the data bus and into the internal
registers of the processor.

1.5.4.1.1 Peripheral A I/O Port (PAO—-PA7)

As discussed in Section 1.5.2.3. each of the Peripheral 1/O lines can be
programmed to act as an input or an output. This is accomplished by setting
a "1" in the corresponding bit in the Data Direction Register for those lines
which are to act as outputs. A "0" in a bit of the Data Direction Register
causes the corresponding Peripheral |/O lines to act as an input.

The buffers which drive the Peripheral A 1/O lines contain "passive” pull-ups
as shown in Figure 1.28a. These pull-up devices are resistive in nature and
therefore allow the output voltage to go to Vdd for a logic 1. The switches
can sink a full 1.6mA, making these buffers capable of driving one standard
TTL load.

In the input mode, the pull-up devices shown in Figure 1.28a are sfill

connected to the 1/O pin and still supply current to this pin. For this reason,
these lines represent one standard TTL load in the input mode.

1.5.4.1.2 Peripheral B I/O Port (PBO—PB7)

The Peripheral B 1/O port duplicates many of the functions of the Peripheral
A port. The process of programming these lines to act as an input or an output
has been discussed previously. Likewise, the effect of reading or writing this
port has been discussed. However, there are several characteristics of the
buffers driving these lines which affect their use in peripheral interfacing.
These will be discussed below.

The Peripheral B |/O port buffers are push-pull devices as shown in Figure
1.28b. The pull-up devices are switched "OFF" in the "0" state and "ON" for
a logic 1. Since these pull-ups are active devices, the logic "1" voltage is not
guaranteed to go higher than +2.4V. They are TTL compatible but are not
CMOS compatible.

However, the active pull-up devices can sink up to TmA at 1.5V. This current
drive capability is provided to allow direct connection to Darlington transistor
switches. This allows very simple control of relays, lamps, etc.

Because these outputs are designed to drive transistors directly, the output
data is read directly from the Peripheral Output Register for those lines
programmed to act as inputs.

65

The final characteristic which is a function of the Peripheral B push-pull buffers
is the high-impedance input state. When the Peripheral B 1/O lines are
programmed to act as inputs, the output buffer enters the high impedance
state. These inputs will then have an impedance of greater than 1 megohm.

1.5.4.2 Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2)

The four interrupt input/peripheral control lines provide a number of special
peripheral control functions. These lines greatly enhance the power of the
two general purpose interface ports (PAO-PA7, PBO—PB7).

1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CA1, CA2)

CA1 is an interrupt input only. An active transition of the signal on this input
will set bit 7 of the Control Register A to a logic 1. The active transition can
be programmed by the microprocessor by setting a "0" in bit 1 of the CRA
if the interrupt flag (bit 7 of CRA) is to be set on a negative transition of the
CAT1 signal or a "1" if it is to be set on a positive transition. Note: A negative
transition is defined as a transition from a high (> 2.4V) to a low (< 0.4V),
and a positive transition is defined as a transition from a low to a high
voltage.

Setting the interrupt flag will interrupt the processor through IRQA if bit O of
CRAis a 1 as described previously.

CA2 can act as a totally independent interrupt input or as a peripheral
control output. As an input (CRA, bit 5 = 0) it acts to set the interrupt flag, bit
6 of CRA, to a logic 1 on the active transition selected by bit 4 of CRA.

These control register bits and interrupt inputs serve the same basic function
as that described above for CA1. The input signal sets the interrupt flag
which serves as the link between the peripheral device and the processor
interrupt structure. The interrupt disable bit allows the processor to exercise
control over the system interrupts.

In the Output mode (CRA, bit 5 = 1), CA2 can operate independently to
generate a simple pulse each time the microprocessor reads the data on the
Peripheral A |/O port. This mode is selected by setting CRA, bit 4 to a "0"
and CRA, bit 3 to a "1." This pulse output can be used to control the counters,
shift registers, etc. which make sequential data available on the Peripheral
input lines.

66

A second output mode allows CA2 to be used in conjunction with CA1 to
"handshake" between the processor and the peripheral device. On the A side,
this technique allows positive control of data transfers from the peripheral
device into the microprocessor. The CA1 input signals the processor that data
is available by interrupting the processor. The processor reads the data and
sets CA2 low. This signals the peripheral device that it can make new data
available. This technique is discussed in detail in Chapter 2.

The final output mode can be selected by setting bit 4 of CRA to a 1. In this
mode, CA2 is a simple peripheral control output which can be set high or low

by setting bit 3 of CRAto a 1 or a O respectively.

The operation of CA1 and CA2 is summarized in the next section.

1.5.4.2.2 Peripheral B Interrupt Input /Peripheral Control Lines (CB1, CB2)

CB1 operates as an interrupt input only in the same manner as CA1. Bit 7 of
CRB is set by the active transition selected by bit O of CRB. Likewise, the CB2
input mode operates exactly the same as the CA2 input modes. The CB2
output modes, CRB, bit 5 = 1, differ somewhat from those of CA2. The pulse
output occurs when the processor writes data into the Peripheral B Output
Register. Also, the "handshaking" operates on data transfers from the
processor into the peripheral device.

The operation of CB1 and CB2 is summarized in the next section. A more

detailed discussion of handshaking on the Peripheral B 1/O port is contained
in Chapter 2 of this manual.

1.5.5 Summary of MCS$6520 Operation

1.5.5.1 Control Register Operation

7 6 5 | 4 [3 2 1] o
CRA | IRQA1T | IRQA2 CA2 CONTROL DDRA | CAT1 CONTROL

7 6 5 | 4 [3 2 1] o
CRB IRQB1 | IRQB2 CB2 CONTROL DDRB | CB2 CONTROL

Control Register Bit Designations
FIGURE 1.29

67

CRA (CRB) | Active Transition IRQA (IRQB)

Bit 1 Bit O | of Input Signal* Interrupt Outputs
0 0 negative Disable — remain high

Enabled — goes low when bit 7
0 1 negative in CRA (CRB) is set by active
transition of signal on CA1 (CB1)

1 0 positive Disable — remain high

1 1 positive Enable — As explained above

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active
transition of the CA1 (CB1) signal. This is independent of the
state of Bit O in CRA (CRB).

Control of Interrupt Inputs CA1, CB1

FIGURE 1.30
CRA (CRB Active Transition IRQA (IRQB)
Bit 5 Bit4 Bit3 | of Input Signal* Interrupt Outputs
0 0 0 negative Disable — remain high

Enabled — goes low when bit 6
0 0 1 negative in CRA (CRB) is set by active
transition of signal on CA2 (CB2)

0 1 0 positive Disable — remain high

0 1 1 positive Enable — As explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active
transition of the CA2 (CB2) signal. This is independent of the
state of Bit 3 in CRA (CRB).

Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = "0")
FIGURE 1.31a

68

=
O
Lo
)

Mode Description

CAZ2 is set high on an active transition of
the CAT1 interrupt input signal and set low
"Handshake" | by a microprocessor "Read A Data"

on Read operation. This allows positive control of
data transfers from the peripheral device
to the microprocessor.

CA2 goes low for one cycle after a
"Read A Data" operation. This pulse can
be used to signal the peripheral device
that data was taken.

Pulse Output

Manual Output | CA2 set low

Manual Output | CA2 set high

Control of CA2 Output Modes
FIGURE 1.31b

(@]
w

=
(6]
w
I
w
[OV]

Mode Description

CB2 is set low on microprocessor "Write
B Data" operation and is set high by an
"Handshake" active transition of the CB1 interrupt input

on Write signal. This allows positive control of data
transfers from the microprocessor to the
peripheral device.

CB2 goes low for one cycle after a
microprocessor "Write B Data"
operation. This can be used to signal the
peripheral device that data is available.

Pulse Output

Manual Output | CB2 set low

Manual Output | CB2 set high

Control of CB2 Output Modes
FIGURE 1.31¢

69

1.5.5.2 MCS6520 Operation in MC6500 Systems

A brief review of the overall operation of the MCS6520 should serve to
tie together many of the details discussed previously.

During the system initialization routine which is executed in response to
the processor RESET signal, the microprocessor will write a pattern of 1's
and OQ's into the Data Direction Registers. This will determine those lines
which are to act as inputs and those which are to act as outputs.

This pattern will usually be fixed for the system operation. Therefore, the
next step would be to set the various operating modes, active transitions,
etc. which are controlled by the Control Registers. At the same time the
Data Direction Register Access Control Bit can be set to a 1 to allow the
processor to control the Peripheral Ports during system operation.

The interrupts will normally remain disabled until the entire system is
initialized. At this time, the interrupts are enabled and full system
operation begins.

During system operation, the microprocessor will interrogate the switches,
sensors, etc. in the peripheral device by reading the data on the
Peripheral Input lines. Binary or decimal data may be transferred into
the microprocessor in the same way. At the same time the various lights,
motors, solenoids, etc. on the peripheral device are controlled by writing
data into the appropriate bits of the Peripheral Output Registers. The
entire sequence of operations is determined by the programmer to
control a particular peripheral device in a defined manner. The various
registers, gates, etc. in the Interface Device act primarily as a link
between the internal processor operations and the various inputs and
outputs on the peripheral devices being controlled.

70

1.6 PERIPHERAL INTERFACE/MEMORY DEVICE — MCS6530

1.6.1 Introduction

The MCS6530 is designed to operate in conjunction with the MCS650X
Microprocessor. It is comprised of a mask programmable 1024 x 8 ROM,
a 64 x 8 RAM, two 8 bit bi-directional ports capable of directly
interfacing the Microprocessor unit and peripheral devices and a
programmable interval timer with interrupt, capable of timing in various
intervals from 1 to 262,144 clock periods.

The 1/O configuration, the interval timer and interrupt capability are
under software control.

e 8 bit bi-directional Data Bus for communication with the microprocessor
unit.

Two 8 bit bi-directional ports for direct interface to peripherals.
Two 1/O Peripheral Data Direction Registers

Programmable Interval Timer from 1 to 256 x 1024 dock periods.
Programmable Interval Timer Interrupt

CMOS Compatible Peripheral Lines

Peripheral Pins with Direct Transistor Drive Capability

Three-State Data Pins

Up to 7K contiguous ROM with no external decoding

1024 x 8 ROM

64 x 8 Static RAM

1.6.2 Pinout Description

Figure 1.33 is the pinout diagram of the MCS6530.

1.6.2.1 Reset (RES)

During system initialization a Logic "0" on the RES input will cause a
zeroing of all I/O registers. This in turn will cause all /O buses to act as
inputs thus protecting external components from possible damage and
erroneous data while the system is being configured under software
control. The Data Bus Buffers are put into an OFF-STATE during Reset.
Interrupt is disabled when reset. The RES signal must be held low for at
least one clock period when reset is required.

71

Vss

PAO —» [

P2 —»[]

RSO ——— [}

A9
A8
A7
Ab
R/W
A5
A4
A3
A2
Al
AO

—
—
—>
—
—
—
=
—
<:
—>
—
—
=

RES ——»]

iRQ/PB7 <€——]

CS1/PB6 ~4——]

CS2/PB5 <——»]

vcc

]

A W N

VO 0 N o O’

10
11
12
13
14
15
16
17
18
19
20

MCS6530

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22

21

_/

J

!

ottt tnidU

1

MCS6530 Pinout Designation

FIGURE 1.32

72

PA1

PA2
PA3
PA4
PAS
PAS
PA7
DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7
PBO
PB1

PB2
PB3
PB4

1.6.2.2 Input Clock

The input clock is a system Phase Two clock which can be either a low level clock:
+.

(Vi < 0.4, Vih > 2.4) or high level dock: (Vi < 0.2, Vit = Ve g).

1.6.2.3 Read/Write (R/W)

The R/W signal is supplied by the microprocessing unit and is used to control
the transfer of data to and from the microprocessing unit and the MCS6530.
A high on the R/W pin allows the processor to read (with proper addressing)
the data supplied by the MCS6530. A low on the R/W pin allows a write
(with proper addressing) to the MCS6530.

1.6.2.4 Interrupt Request (IRQ)

The IRQ pin is an interrupt pin from the interval timer. This same pin, if not used
as an interrupt, can be used as a peripheral |/O pin (PB7). When used as an
interrupt, the pin should be set up as an input by the data direction register. The
pin will be normally high with a low indicating an interrupt from the MCS6530.
An external pull-up device is not required; however, if collector-OR'd with other
devices, the internal pull-up may be omitted with a mask option.

1.6.2.5 Data Bus (D0-D7)

The MCS6530 has eight bi-directional data pins (D0-D7). These pins connect to
the system's data lines and allow transfer of data to and from the microprocessor
unit. The output buffers remain in the off state except when a Read operation
oceurs.

1.6.2.6 Peripheral Data Ports

The MCS6530 has 16 pins available for peripheral 1/O operations. Each
pin is individually software programmable to act as either an input or an
output. The 16 pins are divided into 2 8-bit ports, PAO-PA7 and PBO—PB7.
PB5, PB6 and PB7 also have other uses which will be discussed in Section
1.6.4. The pins are set up as an input by writing a "0" into the corresponding
bit in the data direction register. A "1" into the data direction register will
cause its corresponding bit to be an output. When in the input mode, the
peripheral output buffers are in the "1" state and a pull-up device acts
as less than one TTL load to the peripheral data lines. On a Read
operation, the microprocessor unit reads the peripheral pin. When the

73

peripheral device gets information from the MCS6530 it receives data
stored in the data register. The microprocessor will read correct
information if the peripheral lines are greater than 2.0 volts for a "1"
and less than 0.8 volts for a "0" as the peripheral pins are all TTL
compatible. Pins PAO and PBO are also capable of sourcing 3mA at 1.5V,
thus making them capable of Darlington drive.

1.6.2.7 Address Lines (A0O-A9)

There are 10 address pins. In addition to these 10, there is the ROM
SELECT pin. The above pins, AO—A9 and ROM SELECT, are always used
as addressing pins. There are 2 additional pins which are mask
programmable and can be used either individually or together as CHIP
SELECTS. They are pins PB5 and PB6. When used as peripheral data pins
they cannot be used as chip selects.

1.6.3 Internal Organization

A block diagram of the internal architecture is shown in Figure 1.33. The
MCS6530 is divided into four basic sections, RAM, ROM, |/O and TIMER.
The RAM and ROM interface directly with the microprocessor through the
system data bus and address lines. The 1/O section consists of two 8-bit
halves. Each half contains a Data Direction Register (DDR) and an |/O
Register. The DDR controls the peripheral output buffers. A "1" written
into the DDR sets up the corresponding peripheral buffer as an output
buffer. By this, it is meant that anything then written into the 1/O Register
will appear on that corresponding peripheral pin. A "0" written into the
DDR inhibits the output buffer from transmitting data from the /O
Register. The output buffer remains in the high state making it ready to
receive data on the peripheral lines.

It should be noted that the microprocessor, when reading the 1/O Regjister,
is in fact reading the Peripheral Pin and not the 1/O Register. The only
way the /O Register data can be changed is by a microprocessor Write
operation. The Register is not affected by the data on the Peripheral Pin.

1.6.3.1 ROM — 1K Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines AO—-A9, as well
as RSO are needed to address the entire ROM. With the addition of

74

DO <
D1 <
D2 -4
D3 -4
D4 <4
D5 4
D6 <
D7 <

CS1* —pp»
CS2*¥ —Ppp»
o2 —P
R/W —
RES —p»

RSO —»

A0 —

A2 —p
A3 —P
A4 —
A5 —P
A6 —B
A7 —
A8 —p
A9 —

*CS1,/CS2 ARE MASK OPTIONS IN PLACE OF PB6/PB5

**PB6 MAY BE USED AT IRQ

DATA
N DIRECTION
DATA “ CONTROL
BUS | g REGISTER
BUFFER
/0
<> REGISTRR
A
CHIP Y
SELECT
R/W
PERIPHERAL
DATA
-+ BUFFER
64%x8 A
RAM -
1K x 8
ROM -
INTERVAL
TIMER
ADDRESS + IRQ
DECODERS

PERIP

A

HERAL

DATA
BUFFER

B

\

/

A
\

REGI

1/0

STER

B

A
\/

DATA
DIRECTION
CONTROL
REGISTER
B

MCS6530 Internal Architecture
FIGURE 1.33

75

PA7
PA6
PA5
PA4
PA3
PA2
PA1

PAO

PB7**
PBG*
PB5*
PB4
PB3
PB2

PBO

CS1 and CS2, up to seven MCS6530s may be addressed, giving 7168 x 8
bits of contiguous ROM.

1.6.3.2 RAM — 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS6530. It is addressed by AO—
A5 (Byte Select), RSO, A6, A7, A8, A9 and, depending on the number of
chips in the system, CS1 and CS2.

1.6.3.3 Internal Peripheral Registers

There are four internal registers, two data direction registers and two
peripheral 1/O data registers. The two data direction registers (A side and
B side) control the direction of data into and out of the peripheral pins. For
example, a "1" loaded into data direction register A, position 3 sets up
peripheral pin PA3 as an output. If a "0" had been loaded instead, PA3
would be configured as an input. The two data |I/O registers are used to
latch data from the data bus during a Write operation until the peripheral
device can read the data supplied by the microprocessor unit. Although
during a Read operation the microprocessor unit reads the peripheral pin,
the address is the same as the register. For those pins programmed as outputs
by the data direction registers, the data on the pins will be the same as that
in the 1/O register.

1.6.3.4 Interval Timer

The Timer section of the MCS6530 contains three basic parts: preliminary
divide down register, programmable 8-bit register and interrupt logic. These
are illustrated in Figure 1.34.

The interval timer can be programmed to count up to 256 time intervals. Each
time interval can be either 1T, 8T, 64T or 1024T increments, where T is the
system clock period. When a full count is reached, an interrupt flag is set to
a logic "1." After the interrupt flag is set the internal clock begins counting
down to a maximum of -255T. Thus, after the interrupt flag is set, a Read of
the timer will tell how long since the flag was set up to a maximum of 255T.

When writing to the timer, the high order 8 bits of the timer are written
by the system data bus. If a count of 52 time intervals were to be counted,
00110100 would be written into the timer section. The time intervals of
1, 8, 64 or 1024T are decoded from address lines AO and A1l at
this same time. Address line A3, if high during this write operation,

76

256 Intervals

A
r Al

D7 D¢ D5 D4 D3 D2 D1 Do

TYVVVVYY

R/W

PROGRAMMABLE
REGISTER

'

L

—

A3 —p|

R/W —»]

INT.
FLAG

RQ

YYVYYYY

D¢ D5 D4 D3 D2 D1 Dg

D7

DIVIDE DOWN |—®;

1T, 8T, 64T, or 1024T = Intervals

Basic Elements of Interval Timer

FIGURE 1

77

.34

enables the interrupt flag onto pin PB7. PB7 should be programmed as an
input if it is to be used as an interrupt pin. PB7 goes low when an interrupt
occurs. When the timer is read prior to the interrupt flag being set, the
number of time intervals remaining will be read, i.e., 51, 50, 49, etc.

Should the timer be read when interrupt occurs, the value read would be
11111111, After interrupt, the timer register decrements at a divide by
"1" rate of the system clock. If after interrupt, the timer is read and a
value of 11100100 is read, the time since interrupt is 28T. The value
read is in two's complement.

Value read = 11100100
Complement = 00011011
ADD 1 = 00011100 = 28.

Thus, to arrive at the total elapsed time, merely do a two's complement
add to the original time written into the timer. Again, assume time written
as 00110100 (= 52). With a divide by 8, total time to interrupt is (52 x
8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T,
assuming the value read after interrupt was 11100100.

After interrupt, whenever the timer is written or read the interrupt is reset.
However, the reading or writing of the timer at the same time interrupt
occurs will not reset the interrupt flag.

Figure 1.35 illustrates an example of interrupt.

When reading the timer after an interrupt, A3 should be low so as to
disable the IRQ pin. This is done so as to avoid future interrupts until after
another Write timer operation.

1.6.4 Addressing

Addressing of the MCS6530 offers many variations to the user for
greater flexibility. The user may configure his system with RAM in
lower memory, ROM in higher memory, and 1/O registers with
interval timers between the extremes. There are 10 address lines
(AO—A9). In addition, there is the possibility of 3 additional address
lines to be used as chip-selects and to distinguish between ROM,
RAM, I/O and interval timer. Two of the additional lines are chip-
selects 1 and 2 (CS1 and CS2). The chip-select pins can also be PB5
and PB6. Whether the pins are used as chip-selects or peripheral
I/O pins is a mask option and must be specified when ordering the
part. Both pins act independently of each other in that either or both

78

Oy N _I_\J_LI_U_LJ_LI_LJ!U!LJ!\J_L
WRITET_’_|

IRQ

SHOULD THE PROGRAMMABLE TIMER REGISTER BE READ AT THE
TIMES NOTED ON THE DIAGRAM ABOVE, IT WOULD CONTAIN:

1 Data written into interval timer is 001100100 = 5210 A divide by 8 pre-scale is used

2 00011001 = 25 52—2—1=52—26—1=25

3 00000000 =0 Sz—ﬁ—l—sz 51-1=0

4 Interrupt has occurred at @2 pulse #416

5 10101100 Two; complement = 01010100 = 84 84 + (52x8) = 50010

10

Example of Interrupt Generated by Interval Timer
FIGURE 1.35

79

pins may be designated as a chip-select. The third additional address
line is RSO. The MCS6502 and MCS6530 in a 2-chip system would use
RSO to distinguish between ROM and non-ROM sections of the MCS6530.
With the addressing pins available, a total of 7K contiguous ROM may
be addressed with no external decode. Below is an example of a 1-chip
and a 7-chip MCS6530 Addressing Scheme.

1.6.4.1 One-Chip Addressing

Figure 1.36 illustrates a 1-chip system decode for the MCS6530.

1.6.4.2 Seven-Chip Addressing

In the 7-chip system the objective would be to have 7K of contiguous
ROM, with RAM in low order memory. The 7K of ROM could be placed
between addresses 65,536 and 1024. For this case, assume A13, A14
and A15 are all 1 when addressing ROM, and O when addressing RAM
or 1/O. This would place the 7K ROM between Addresses 65,535 and
57,367. The 2 pins designated as chip-select or |/O would be masked
programmed as chip-select pins. Pin RSO would be connected to address
line A10. Pins CS1 and CS2 would be connected to address lines A11
and A12 respectively. See Figure 1.37.

The two examples shown would allow addressing of the ROM and RAM;
however, once the |/O timer has been addressed, further decoding is
necessary to select which of the 1/O registers are desired, as well as the
coding of the interval timer.

1.6.4.3 1/O Register — Timer Addressing

Figure 1.38 illustrates the addressing decoding for the internal elements
and timer programming. Address line A2 distinguishes |/O registers from
the timer. When A2 is low and I/O timer select is high, the |/O registers
are addressed. Once the 1/O registers are addressed, address lines A1
and AO decode the desired register.

When the timer is selected A1 and AO decode the divide by matrix. This

is discussed further in the Timer Section. In addition, Address A3 is used
to enable the interrupt flag to PB7.

80

Ccs2

Cs1

RSO

A6

A5
A4
A3
A2
Al
A0

=

1/O TIMER SEL.

INT. TIMER SEL.

A3
INTERVAL
Al TIMER

AO

1/O SEL.
Al 1/0
A0

RAM SEL.

A5

A4

A3 RAM
A2

Al

A0

ROM SEL.

A9

A8

A7

A6

A5
A4
A3
A2
Al
A0

A. | X indicates mask programming
i.,e. ROM select = CS1*RSO
RAM select = CS1eRSO°AG*A7°AS
I/O TIMER SELECT = CS1°RS0°A9°AB°A7°A6

B. Notice that A8 is a don't care for RAM select

C. | CS2 can be used as PB5 in this example.

MCS6530 One Chip Address Encoding Diagram

FIGURE 1.36

81

The addressing of the ROM select, RAM select and |/O Timer select lines
would be as follows:

CS2 CS1 RSO

Al2 A1l AI0 A9 A8 A7 A6

MCS6530 #1, ROMSELECT 0 O 1 X X X X
RAM SELECT o 0 0O O o0 o0 O

1/O TIMER o 0 o0 1 0 o0 O

MCS6530 #2, ROMSELECT 0 1 0 X X X X
RAM SELECT o 0 0 o0 0 o0 1

/O TIMER o 0 o0 1 0 o0 1

MCS6530 #3, ROMSELECT 0 1 1 X X X X
RAM SELECT o 0 o0 o 0 1 ©

1/O TIMER o 0o o0 1 0 1 ©

MCS6530 #4, ROMSELECT 1 0 O X X X X
RAM SELECT o 0 o0 o0 0 1 1

/O TIMER o 0 o0 1 0 1 1

MCS6530 #5, ROMSELECT 1 0 1 X X X X
RAM SELECT o 0 0 o0 1 o0 O

1/O TIMER o 0o o0 1 1 o0 O

MCS6530 #6, ROMSELECT 1 1 0 X X X X
RAM SELECT o 0 o0 o0 1 o0 1

/O TIMER o 0 o0 1 1 o0 1

MCS6530 #7, ROMSELECT 1 1 1 X X X X
RAM SELECT 0 o0 o 1 1 o0

1/O TIMER o o o 1 1 1 o©

*RAM select for MCS6530 #5 would read = AT2¢A11+A10°A0°A8eA7*AS

MCS6530 Seven Chip Addressing Scheme
FIGURE 1.37

82

O — O ~—

X X X m — — — O O O O

ov

8¢l N2l
Jawil) pup ssysibey O /| 104 apodeQq Buisseippy

X L X L L 0 0
X L 0] L L 0 0]
L L 0] 0 L 0 0]
L L L 0 L 0] 0]
0 L 0 0 L 0 0]
0 L L 0 L 0] 0]
L 0 X L L 0 0]
L 0 X 0 L 0] 0]
0 0 X L L 0] 0]
0] 0 X 0 L 0] 0]
L 0 X L L 0 0
L 0 X 0 L 0 0
0 0 X L L 0 0
0 0 X 0 L 0 0
X X X L 0 L 0
X X X 0 0 L 0
X X X L 0 0 L

IV TV &V M/d 1DIBES @EWILO/I DIESWVE ID313S WOI

3A0D03A ONISSIIaav

OV1d LdNYJFINI avId

£4d °} Odl 319vSId
dIWIL avad

£9d °1 OdI/OM LrZol +
£9d oL DY/ M L9 +
£9d o1 DYI/OM 18 +

/94 o+ DY/ M LL =
JIWIL ILRIM
g 'O "¥3d avn
9 °O3Y "¥3d ALIM
v 'O3¥ "¥3d avay
V 'O3Y "¥3d ILRM
3aa avay
234 LM
viaa avay
viad LM
WYY avay
WV 3LIRIM
WOd avay

83

CHAPTER 2

CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 THE SYSTEM CONFIGURATION TASK

The first part of any microprocessor-based design effort is the system
configuration task. In fact, this probably requires more creativity from the
designer than any other part of the design effort. The goal of the system
configuration effort is the generation of a list of components which will
make up the system, a detailed interconnect diagram and a detailed
description of the total system operation. This includes a definition of how
the processor will control the peripheral devices as well as a definition of
the internal operations to be performed. This does not include detailed
implementation of the design such as laying out printed circuit boards and
writing programs, but does involve enough analysis of the total operation
to assure that the system will operate properly after all the hardware
and software is assembled.

The technically based selection of components and the definition of the
general operation of the system must be based on consideration of two
factors. These are:

1. System speed requirements
2. System input/output requirements

Both of these factors are interrelated. Therefore, it will usually be
necessary to define an 1/O configuration and then verify that the
processor can operate at the speed required by the peripheral devices.
If there appears to be any difficulty with the 1/O operation, this structure
must be re-defined and re-analyzed.

In addition to the speed requirements of the |/O devices, there are also
general speed requirements for the internal processor operations
(arithmetic operations, data manipulation, etc.). This speed requirement is
usually somewhat more flexible than that associated with 1/O but it should
be defined along with any other system requirements. The ultimate test
of system speed must wait for the generation of both the hardware and
the program; however, the system requirements and capability must be
analyzed very early in the system development process to assure that no
problems will arise during the last stages of the design.

84

2.2 INPUT/OUTPUT TECHNIQUES

2.2.1 The General Purpose Input/Output (1/O) Port

Although the concept of the I/O port was introduced briefly in Section
1, and the operation of two MCS6500 family devices which provide
general purpose |/O capability has been discussed in Sections 1.5 and
1.6, little has been said about what factors must be considered when
configuring an |/O structure using these devices.

The general purpose |/O port consists of eight lines, each of which can
act as either an input or an output. As an input, each line can detect the
state of one switch or can detect one bit of data. As an output, each
line can control one light, solenoid, etc. or can provide one bit of data
to a peripheral device. If this technique is used in peripheral control, the
operation of each line is totally defined in the system program.

For most systems, the general purpose interface device provides more
than adequate speed and flexibility to solve the entire peripheral
interface problem. Usually, a cost savings can be realized because of
the reduced component cost and the necessity of stocking only one type
of interface device. In addition, use of the general purpose peripheral
interface device allows the designer to tailor the operation of the
interface device to fit the problem at hand.

The ultimate component selection must be preceded by a study of each
section of the system input/output structure and a study of the overall
system performance. Ultimately, the set of general purpose and special
purpose peripheral interface devices selected for a system must be
chosen to minimize total cost while assuring satisfactory system
performance.

85

Processor speed is a function of two things. The first is simply the number
of instructions required to perform the desired operations. The second
is the percentage of processor time required to service interrupts. The
typical system may employ several interrupt signals which occur at fixed
intervals. At times, these may be combined with other interrupts being
generated by a peripheral device. It is important that the total service
time for these interrupts does not exceed that allowable and that the
time available to the processor for executing the main program is
sufficient to allow the system to operate at its required speed.

During the system configuration process, detailed system programs
need not be generated. However, it will be necessary to write small
portions of the software to verify the speed of execution and to assure
proper operation of the total system.

This chapter will discuss special techniques for the control of the various
components which may be included in a microcomputer system, as well
as techniques for controlling peripheral devices which are attached to
the system. A discussion of programming techniques which can be used
to optimize the total system performance is contained in the
Programming Manual.

2.2.2 The Special Purpose Peripheral Interface Device

The special purpose, dedicated 1/O device must also be considered in
any microcomputer design. These devices are designed to completely
handle a single well-defined problem; for example, driving a particular
printer, handling a particular type of communications line or driving a
scanned display. These special purpose devices are designed to totally
handle their particular task with very little help from the processor.

86

The primary advantage of this type of interface device is that it requires
an absolute minimum amount of attention from the processor. The major
disadvantage of special purpose 1/O is increased component cost. The
total production volume for these devices is less than that of the more
universal |/O chips and also the total chip size is usually greater.

The use of special purpose peripheral control devices will not be
discussed in this manual. Instead, a detailed study will be made of the
more general problem of configuring the 8-bit bi-directional peripheral
port. In addition, this chapter will cover some special techniques which
can greatly enhance the power of this type of interface device.

2.2.3 Configuring the General Purpose 1/O Port

The 8-bit peripheral control port included on the MCS6520 and the
MCS6530 allows each line to be programmed to act as an input or an
output. This is accomplished when the processor writes a pattern of 1's
and O's into the data direction register. Writing a 1 causes the pin to
become an output, and writing a O causes it to act as an input. Although
this operation is normally performed only during system initialization,
the ability to do so under program control allows some very important
peripheral control techniques. An example of this is described below.

The process of configuring the general purpose |/O port involves first
examining the peripheral devices to analyze the various control inputs,
switches, sensors, data signals, etc. which must be handled by the
microprocessor to properly control the device. Each function must then
be assigned to a line on the |/O port. The ultimate goal of this process
is the creation of a list of I/O pins, the function of each pin, and an
indication of whether each pin is to be an input or an output.

Since each line is capable of operating as an input or an output, and
since there is very little to differentiate one line from any other, the
actual assignment can be made fairly late in the system development
cycle after consideration of software techniques and printed circuit
board layout. In fact, software considerations may be the only thing
which dictates that a signal be connected to one pin or another.

Developing a thorough understanding of the software in the MCS6500
systems will require a detail study of the Programming Manual.
However, several operations which can be performed by the processor
and which affect the assignment of inputs and outputs will be discussed
briefly here.

87

2.2.3.1 Assignment of Outputs

A maijor factor in the assignment of output pins can be the ability of the
MCS650X processor to increment and decrement memory. Since the 1/O
port is treated as a location in memory, this incrementing and
decrementing can be used to rapidly set and clear the low order bit in
this memory location. This is illustrated in Figure 2.1.

Note that this does not affect anything but the low order bit if it is used
properly as shown. This operation can be performed more rapidly than
several other software techniques which can be used to affect a single
bit. Therefore, control of a single indicator, data line, etc. can be
greatly enhanced by putting it on the low order bit of an 1/O port. This
is the reason the low order bit of both the MCS6530 peripheral ports
(PAO and PBO) provide the ability to drive transistors directly. In many
applications, a simple transistor attached to one of those pins would
provide very convenient control of a motor, lamp, etc.

The ability of the microprocessor to shift data in memory can be another
very important factor in the assignment of outputs. Operations which
require sequential strobe signals can be controlled conveniently by
shifting a single high (or low) signal from pin to pin under software
control. The specific choice of pins can greatly enhance the ease with
which this signal is controlled.

2.2.3.2 Assignment of Inputs

In general, the processor deals with the input data from switches,
keyboards, etc. by reading the data on the I/O port into the internal
registers of the processor (usually the accumulator) and using the resulting
condition of flags in the Processor Status Register to control the program
which is executed. During this transfer process, the N flag in the Processor
Status Register is set equal to the high order bit (bit 7) of the word read
from the 1/O port. This N flag can then be used to cause the processor to
execute different sections of the program (See the Programming Manual,
Chapter 4, for a detailed discussion of Branching). Likewise, by
performing certain instructions, the V flag in the Processor Status Register
can be set equal to bit 6 on the |/O port. This flag can then be used to
affect the program which is executed.

This operation of setting the internal flags from bits 6 and 7 of the
memory word means that making these two lines inputs on an |/O port

88

1

LOADED INTO
MCS6520
MICROPROCESSOR

2

AFTER
DECREMENT
OPERATION

3

AFTER

SUBSEQUENT —_—

MCS6520 DATA REGISTER

—_—

of1]0|0f1]0(fO|1

VOLTAGE ON OUTPUT
PINS OF MCS6520

|—> HIGH (>2.4V)

L » LOW (<0.4V)

————» LOW

I—> LOW

———» LOW

————————» LOW

INCREMENT
OPERATION

I—> HIGH

—————» LOW

— LOW

Control of Low Order Bit of MCS6520 Output Register

FIGURE 2.1

89

will allow very convenient testing of the condition of the switches,
sensors, etc. attached to these inputs. If more than two input signals are
to be attached to a port, the additional inputs should be placed on bit
5, then bit 4 and so on. The processor can then perform operations which
shift the lower order bits into bit 7 one at a time and sets the N flag
equal to this bit. After each shift the N flag can be used to determine
the actual program which is to be executed. (See the Programming
Manual for a discussion of the Shift instructions.)

From the above example, one should conclude that the assignments
which the designer makes will be very much a function of the software
techniques which will be employed in controlling each line. It is very
important that the designer be familiar with these techniques and that
he document the techniques which he has in mind when making the
assignments. This is particularly important when the system program is
to be written by someone else. Also, it is important that those doing the
system development work constantly review the I/O structure to
optimize the software involved as the system program is written.

2.2.4 Power-On Considerations

Chapter 1, Section 1.3.3 discusses the operation of the system RESET
function. Reference is made to the fact that this can be used to assure
that all I/O lines come up in a known state when power is applied to
the chip. Although this is a very important function, the designer must
assure himself that this RESET state does not adversely affect the
peripheral devices. This section describes some of the problems which
can be encountered when the system is reset and discusses several
techniques which can be used to assure smooth power-up operation.

The 1/O lines of the MCS6530 and MCS6520 all enter the input state
when the reset line goes to GND (< 0.4V). For the MCS6530 1/O lines,
and for the Peripheral A port on the MCS6520, these pins will go to
+5V DC (Vdd). This is due to the output structure on these pins. When
these lines are in the input state, the output switch becomes an open
circuit but the pull-up device continues to supply current to the pin.

Figure 2.2 shows a peripheral port which is configured to drive two

solenoids. These solenoids can be controlled properly after the system is
initialized; however, when the manual reset switch is activated, both I/O

90

PERIPHERAL
INTERFACE

FROM DEVICE

MICROPROCESSOR MCS6520

.
——» 3
———» OUTPUT
; LINES
——
o

SOLENOID COILS

oo

A~ o

MCS6520 Control of Transistor Driven Solenoids

FIGURE 2.2

91

lines enter the input state, the transistors saturate (close) and the
solenoids are activated. This can be catastrophic in most mechanical
subsystems, so it is important that this potential condition be understood
and prevented. Figure 2.3 shows two satisfactory solutions to this
problem. The first, Figure 2.3a, requires that a "0" be written into the
output line by the processor to actuate the solenoids. This assures that
the solenoids will not be powered simultaneously when the manual reset
switch is pressed. However, it does intfroduce another potential problem.
When the reset line on the peripheral interface device goes low (<
0.4V), the contents of both the Peripheral Data register and the Data
Direction register are cleared to zeros. If the Data Direction register is
set to 1's, both solenoids will immediately actuate due to the O stored
in the Peripheral Data register. This can be avoided completely if the
system software first sets the bits in the Peripheral Data register to a 1
and then sets the Data Direction register to a 1. The |/O pin will go high
when the reset switch is actuated and will simply stay high through the
initialization routine.

Figure 2.3b illustrates a solution which may be more applicable to a
large system or a complex peripheral. In this approach, a separate
output line is used to apply power to the peripheral device. The power
to the entire peripheral or to just the critical elements is kept off until
the entire system is initialized and is ready to run the system program.

On the MCS6520 Peripheral B port, the 1/O lines are open circuit (high
impedance) in the input state. As a result, the configuration in Figure 2.2
will not cause the same problem on the MCS6520 Peripheral B port as
would be expected on the MCS6530. In the input state, the |/O pin is
incapable of sourcing any more than a few microamps.

However, if one were to use a solenoid driver as shown in Figure 2.4,
the TTL input structure on the drivers would interpret the high-impedance
state as a logic 1 and would actuate the solenoids. Both the solutions in
Figure 2.3 would be satisfactory in this case. However, the transistors
are connected to the TTL buffer. In addition, the extra output shown in
Figure 2.3b, controlling power to the peripheral device, could actually
be used to enable the solenoid drivers if an enable input is available
to these devices. This configuration is illustrated in Figure 2.5.

92

MCS6520 Control of
PNP Transistor Driving
Solenoid Coil
FIGURE 2.3a

MCS6520 Controlling
Both Power and Drivers
of Solenoid Cell
FIGURE 2.3b

MCS6520 Driving
TTL Buffers
FIGURE 2.4

—p 8 OUTPUT +V
—» LINES
>
PERIPHERAL |
INTERFACE — SOLENOID
DEVICE > ol
[HEERI] v
;‘\J
SOLENOID
COIL
O
+V
8 ouTPUT POWER CONTROL
LINES TRANSISTOR
—
>
> SOLENOID
PERIPHERAL |—p- INEEN| Oy CELLS
INTERFACE |—3
DEVICE >
+V
11
— SOLENOID
PERIPHERAL [P COILS
INTERFACE [+V
DEVICE [P
Mcses20 [P * 1]
— TIL =
BUFFERS

+V +V

SOLENOID COILS

o-o0 A

— INRNARRINANE
—
8
PERIPHERAL ourpuT
INTERFACE LINES

DEVICE

—
MCS6520 |—p
_ ENABLE SIGNAL DO{J_E

—7

TTL
GATES =

MCS6520 Controlling Solenoids with Enable Signal and TTL Interface
FIGURE 2.5

2.2.5 Handshaking

The MCS6520 provides both interrupt control and data transfer control
capability. The technique for controlling the transfer of data between the
processor and a peripheral device is referred to as handshaking. In this
procedure, each device (the processor or peripheral) is capable of
signalling the other that its operation is complete. The sequence differs
somewhat for transfers into or out of the processor, so they will be
discussed separately below.

2.2.5.1 Handshaking on Data Transfers from the Processor

The transfer of data out of the processor into a peripheral device is
performed by first writing the data into the data register within the
MCS6520. This data then appears on the peripheral output lines where
it can be read by the peripheral device for storage, display, etc.

94

Control of this data transfer by handshaking requires first that the
processor signals the peripheral device that data is available on the |/O
port. The peripheral device then reads this data and signals to the
processor that the data has been taken and that new data can be made
available. The processor then makes new data available and the cycle is
repeated.

As described in Chapter 1, the Peripheral B Interface Port on the
MCS6520 is designed to perform handshaking on WRITE operations. The
CB2 peripheral control line can be programmed to act as an output which
goes low each time the processor writes data onto the Peripheral B
I/O port. This is the signal which is used to tell the peripheral device that
data is available on these output lines.

The CB2 output line will stay low until the peripheral device signals the
processor that the data is taken. This is accomplished by interrupting the

processor through the CB1 interrupt input.

The sequence which takes place during the "WRITE" handshaking
operation described above is shown in Figure 2.6.

2.2.5.2 Handshaking on Data Transfers into the Processor

The Peripheral A 1/O port on the MCS6520 is designed to handshake on
data transfers from the peripheral device into the processor. In this
sequence, the peripheral device must signal the processor that data is
available and the processor must signal back that data was taken. This is
basically the same sequence as that performed in the previous operation.
The CA1 interrupt input is used to interrupt the processor to indicate that
there is data available on the Peripheral A |/O port. The peripheral
device must then hold that data there until the processor reads it into its
internal registers. When the processor reads the Peripheral A |/O port,
the CA2 peripheral control line goes low to signal to the peripheral
device that the data has been taken and new data can be made
available. This entire sequence is shown in Figure 2.7.

The handshaking operations described above can be an extremely
powerful technique for interfacing data storage devices or, in general,
any device which must transfer blocks of data and which has a variable
response time. If the processor cannot predict the speed with which the

95

peripheral takes data, for instance, it must rely on the peripheral to signal
that it has done so.

Initiating the data transfer sequence is usually accomplished through a
set of |/O lines separate from the port which is transferring the data.
However, once the sequence is under way, the processor must deal with
the peripheral device only when an interrupt has occurred. This allows the
processor to execute the primary system program while still servicing
these peripheral devices.

96

1
ADDRESS >< X

ova | LJ UL LIL

(LN
“

(LN
(PN

(LN
“

R/W 1|

2\
DATA BUS {) {5
L ¢
PERIPHERAL 3X 27
DATA < ¢
CB2 4 6

wn

[N
“x

(LN
(PN

CB1 5X

(LN
(PN

Processor puts out address of peripheral device and changes
R/W signal to write enable (low).

During phase two processor puts out data on Data Bus.

Data from the processor is accepted by the MCS6520 on the
falling edge of the enable clock.

Peripheral Interface device now begins the handshake by
signaling the peripheral device that data is available to read on
the output port.

When the external peripheral device reads the data on the
output port it will respond by a change in CB1.

This change in CB1 is followed by a positive transition of CB2
signalling the processor that data was accepted.

Write Handshake Sequence
FIGURE 2.6

97

SUEC I I O O I O

DATA

ADDRESS

DATA BUS 5§ <)

j—

hw

{
PERIPHERAL]X ’

(PN

[N
[N

CA 2><

RQ 4

o

CA2 3/

New Data is put out by peripheral device.

The peripheral interface device is signaled by CA1 that the new
data is ready to be read at the input port.

CAZ2 is put in the high state.

The processor is signalled that new data is ready to be read by
a low level on the IRQ line.

The processor begins servicing the Interrupt request and during
routine the processor will put out the read signal and the Address
of the Peripheral Interface device.

The Peripheral interface will transfer the new data from the
peripheral device to the microprocessor through the data bus.
When Data has been transferred the peripheral device will be
signaled by CA2 going low.

Read Handshake Sequence
FIGURE 2.7

98

2.3 CONFIGURING THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE
SUPPORT CHIPS.

The system block diagram (Figure 2.8) shows the basic data paths which
allow the MCS6500 system to operate. Data Bus, Address Bus, R/W
signal, etc. are shown as simple connections between the various chips in
the system. Although these data paths will exist in any system, no matter
how complex, each element of the microprocessor interface must be
examined to assure that each chip is properly driven with signals which
meet all specifications for the device, to assure that the inter-chip timing
is proper and to assure that the overall system is operating as required.

2.3.1 Assignment of Addresses in the MCS6500 System

The only method which the microprocessor has for selecting between the
various RAMs, ROMs, etc. in a system is through the address output lines.
For this reason, the designer must use these lines very carefully to achieve
minimum system cost and to assure satisfactory system performance.

Before looking at how the address lines can be configured to minimize
total system cost or program execution time, the designer should
understand how the binary value associated with each address line is
related to the total address space available to the microprocessor and
how the AND function of various address lines can be used to select large
blocks of addresses. Figure 2.9 illustrates the state of the three high-order
address lines for the entire address space available to the MCS650X.
Note that the highest order address line is a logic 1 for exactly half of
the available address. The AND function of the two highest order address
lines is a logic 1 for one-fourth of the available addresses, and so forth.
Figure 2.9 also illustrates several AND functions derived from the three
highest order address lines. Each is true for a different block of the
available addresses.

Generation of the AND function of various high order address lines is
extremely important because of the chip select techniques employed on the
processor support chips. As described in Chapter 1, Section 1.5.2.4, the
MCS6520 has three chip-select lines. The entire chip is selected for reading
or writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low

99

S3NIM VIvA TOIINOD

(WO¥d 3O WOY) (Wvd) SIDIAIQ
3OVIOLS JOVIOLIS WVIO0Ud |9 IDOVEILNI
WYIDO0Ud 40 viva 3 TVIIHdINEd
A ;)r A).; & A N N A
]
oz
+33TIOYLINOD +33TTOILNOD
WO¥d (Wvd) #
|
AN AN W m M
6 K
|V
€ m — - S
<] <
$ s — ;
v) P
>
v [2) w TO¥INOD
U ¥y 'D3x3'D0¥d 1l
™ A4
v O S <
< > 98 o +¥ITIOYNOD
og > 3 @ = > wwa
oz O 9 3
O 2 o
<
[-4)
=
o 2
5z o S3ANIN V1va 10¥INOD
6&
(V]

<

(2059) DNAS

*OPTIONAL

Organization of Microcomputer System

FIGURE 2.8

100

MICROPROCESSOR HIGH ORDER ADDRESS

ADDRESS ADDRESS ADDRESS LINE LOGIC "AND" FUNCTION
SPACE LINEAH LINE AH-1 AH-2 AH*AH-1 AHe®AH-1+AH-2
0 0 0 0 0
A 0 A A
0
1
1
0 1
1 0
0
0
1
v 1
0 1 1
1 0 0
A 0
0
1
1 / \ /
0 1 0 0
1 0 1 0
0 0
0 1
1 1
\ 1 1
1 1 1 1

Example of "AND" Function Using High Order Address Lines
FIGURE 2.9

101

(< 0.4V). Selection of the address lines which enable the various chips in the
system is a very basic but very important part of the system configuration task.

It is important to note here that very few microprocessor-based systems
actually require that the processors be able to access a full 65,536 words. In
fact, most systems can be programmed in less than 2,000 words for program
and data memory. The full address space is made available primarily because
it allows the configuration of systems with an absolute minimum of separate
decoding chips between the processor and the support chips. It is possible to
assign any block of address to each type of chip (RAM, ROM, peripheral
interface chips, etc.) in the system. However, each of the assigned addresses
must be mutually exclusive. Only one of the support chips should be selected
for every address used in the system program.

2.3.1.1 ROM Address Assignment

The assignment of ROM addresses is dictated by the fact that the interrupt and
RESET vectors must be located in the 6 high-order words in memory. These are
fixed vectors and must be stored permanently in these locations. For this
reason, the program memory (usually ROM) is usually assigned the high order
addresses. In fact, the recommended procedure is to use A15 (A12 for
MCS6504 and A11 for MCS6503 and MCS6505) to select program ROM.

2.3.1.2 RAM Address Assignment

There are several factors which determine the location of the RAM in an
MCS650X-based system. Data stored in memory under control of the internal
processor Stack Pointer will always go into Page One (ADH = 01). Also, the
entire set of Page Zero addressing modes relies on there being data storage
RAM in Page Zero. For this reason, the RAM in a MCS650X-based system
should be placed in the low order addresses in memory.

With the RAM in low order memory and the ROM in high order memory, the
peripheral interface devices must go somewhere in between. This is
accomplished in Figure 2.10 by using A15 * A14 to select ROMs, A15 to select
RAM, and A15 * A14 to select all peripheral interface devices. This allows
differentiation between the types of support chips. The addressing structure
can be completed by allowing for selection of each chip in the groups.

102

Cs
Al5 ROM
Al4 ¢ Cs
A13
Al2
All
A10
A9 — | M
Cs
MICROPROCESSOR
¢——— Csi
¢ cs2
® Cs3
A0 |— ¢ cs1
cs2
[CS3
——— Csi
A0 ¢ cs2
THROUGH . 3
A9
P
A0 A9 Al5
AN /

TO ADDITIONAL MCS6520’s AND MEMORY

Typical Address Assignments
FIGURE 2.10

103

MCS6520

MCS6520

MCS6520

The addresses which select the various registers, peripheral ports, etc.
within the peripheral interface devices normally used will not be
sequential. For this reason, it is normally recommended that the
technique shown in Figure 2.10 be used to differentiate between the
peripheral interface chips. This allows selection of 12 devices with no
decoding in a MCS6501 or MCS6502-based system, up to nine
MCS6520 devices in a MCS6504-based system, and up to eight
devices in a MCS6503 and MCS6505-based system.

2.3.2 Additional Address Assignment Techniques

In many systems, the techniques illustrated above may not represent
the best solution to the system problem. This is particularly true if
program execution speed is a primary consideration. The fime
required to access the peripheral devices can be reduced by putting
these devices in Page Zero. The entire set of Page Zero addressing
modes can then be used to access these devices. In addition, the
polling of the MCS6520 control registers during interrupt servicing can
be facilitated greatly by putting the control registers in sequential
addresses. These registers can then be accessed using the Page Zero,
Indexed addressing mode described in the Programming Manual. The
address interconnect which allows this is shown in Figure 2.11. Note
that this implementation requires external address decoding chips but
for the system requiring it, this incremental cost will result in higher
operating speeds.

The system designer must become familiar with the addressing lines
and their effect on the address space available to the processor. Even
more important, there is a significant relationship between software
and hardware in microprocessor systems and a full understanding of
both can allow optimization of the trade-off between speed and cost
for the system under design.

2.3.3 Interrupts
The basic concept of interrupts is introduced in Chapter 1, Section 1.3.2

of this manual. However, little is said there about the hardware and
software techniques which are required to assure proper implementation of

104

MCS650X

Al5
Al4
A13
Al12
All
Al10
A9
A8
A7

AS
A4
A3

A2
Al
AO

ROM
Cs

RS1

RSO
CS1
CS2

CS3

RSO
CS1
Cs2

CS3

RS1

RSO
Cs1
CS2

CS3

YYY YYVVYVVVVYVYYYY

10F8
DECODER 1

N—
TO OTHER
6520'S

Page Zero Chip Select Addressing Scheme

FIGURE 2.11

105

A ,.II,—

MCS6520

MCS6520

MCS6520

MCS6520

the interrupt system. This section is designed to introduce the designer to
the details of interrupts and interrupt servicing techniques.

2.3.3.1 Interrupt Prioritizing

Chapter 1 makes reference to various techniques for hardware
prioritizing of interrupts to allow more rapid servicing of interrupts. The
goal of this hardware is to allow the processor to go directly to the
program which services the highest priority active interrupt without taking
the time to poll each interrupting device.

All hardware prioritizing techniques are based on the "priority encoder”
shown in Figure 2.12. This device has eight inputs which are assigned a
priority level from one to eight and generates a three-bit binary code
corresponding to the highest priority active input signal.

The generation of this three-bit code is in reality a trivial task for the
designer. However, relating this code to the address of the corresponding
interrupt service routine is much more difficult and represents an
opportunity for creativity on the part of the designer. Several solutions
will be illustrated here to demonstrate what can be done. These are
certainly not assumed to be the only solutions. Each system must be
considered separately to assure that the implementation chosen is as close
to optimum as possible.

2.3.3.2 Example 1: Selecting the Interrupt Vector

The final step of interrupt response within the processor is the fetching of
an interrupt vector from two fixed addresses in memory. The interrupt
vector located in these fixed addresses identifies the address of the
software which the processor executes to poll the interrupting devices.
Instead of pointing to the polling routine, it would be much faster to go
directly to the software which actually services the interrupt. This requires
a unique vector for each interrupt.

The technique illustrated in Figure 2.12 assumes that the interrupt vectors
are located in ROM at addresses below that normally assigned to the
interrupt vector. The decoder detects the fact that the processor is
reading FFFE or FFFF. At this time the address inputs AD1, AD2 and AD3
into the ROM are driven from the priority encoder. Instead of accessing
FFFE or FFFF, the interrupt vector will come from two addresses selected by

106

AlS
Al4
Al13
A12
ATl
A10
A9
A8
A7
Ab
A5
A4
A3
A2
Al

2K X 8
ROM

iiI‘V FYYYVYVYYYYY

.

QUAD
2 INPUT
DATA

A0

YYVYY

J_f SELECT
AA r

PRIORITY
ENCODER

MICROPROCESSOR

| e
7S
AHHH}AHA*X

INTERRUPT INPUTS

Selecting the Interrupt Vector
FIGURE 2.12

107

the priority encoder. The actual hardware involved is quite simple and
the interrupt response time is an absolute minimum.

2.3.3.3 Example 2: Using the Processor Software Power

These several solutions to the vectored interrupt problem take advantage of
certdin instructions which can be performed by the processor. The first of
these uses an instruction called the Jump Indirect. This instruction causes the
processor to begin executing the program located at that address contained
in two sequential memory locations.

As in Example 1, the three-bit output from the priority encoder becomes part
of the address of the interrupt software. If the output of the priority encoder
is connected to the inputs of a peripheral interface device, the processor can
then perform a Jump Indirect operation using the address on the two
peripheral |/O ports. This is shown in Figure 2.13.

Another solution which takes advantage of the processor software is shown
in Figure 2.14. Once again the output of the priority encoder is connected to
the inputs of a peripheral 1/O port. However, in this approach, the priority
encoder is connected to the low order bits and the other bits can be used as
control or input lines for other functions.

In this method, the three bits from the priority encoder will become part of

an address established in memory. This address will then be used in a Jump
Indirect instruction as before. This operation is detailed in Figure 2.15.

2.3.4 The Application of RDY to Controlling the Memory Interface

The ability to stop the microprocessor can be extremely important when using
memory devices which are not directly compatible with the MCS650X family.

The RDY line on the MCS6501, MCS6502 and MCS6505 can be used to
stop the processor in any "non write" cycle, i.e., any cycle in which the
processor is not attempting to write data into memory. The processor can be
stopped for any number of clock cycles, from one cycle for interfacing with
slow memories to many cycles for DMA applications and for single cycle
execution.

2.3.4.1 Interfacing Slow PROMs

One of the principal applications of RDY is in the control of light-erasable
PROMs or EAROMs. These devices generally have longer access

108

A15 PB7 \
- et |
RE PERIPHERAL oBa FIXED
N INTERFACE [gy o | ADDRESS
AN DEVICE 22— | DATAFOR
o> | messso e | TEER
AN [PBT
MICROPROCESSOR |28 | PBO

A7
AS | /
A5I PA7
A4I PA6 <
A3I PA5 <
A2I PA4 A
A1 ; RSO PA3
AOI RS1 PA2

PA1

PAO

PRIORITY
ENCODER
\ /

INTERRUPT INPUTS
NOTE: CONNECTING THE ADDRESS LINES AS
SHOWN PUTS THE TWO MCS6520 I/O
PORTS IN SEQUENTIAL ADDRESSES.

Using MCS6520 for Jump Indirect Interrupt Routines
FIGURE 2.13

109

P)
RE PES TO OTHER
—— > PERIPHERAL

>
N

PERIPHERAL PB4

Nt INTERFACE [Loy | DEVICES
S =
Lo MCS6520 [— =8>
A9 g | PBl
MICROPROCESSOR |28 | PBO
A7 3
Ab)
A5 3 PA7 3
A4) PA6 3

>
w

PA5S

|

A2) PA4 3
Al 3 RSO PA3 3 y,
AO PA2
—®»—— RSI <
PA1
)
PAO
PRIORITY
ENCODER

T

INTERRUPT INPUTS

Priority Encoder Connected to Low Order Bits of MCS6520
FIGURE 2.1 4a

110

MICROPROCESSOR

Al

-
-
- P

AO

Yy

PERIPHERAL
INTERFACE
DEVICE
(MCS6520)

RSO
RS1

PA7
PAS
PAS
PA4

PA3
PA2
PA1
PAO

— | TO OTHER
—— | PERIPHERAL

INTVEC —» PHA

TXA
PHA
LDA
AND
TAX
LDA

STA

INX
LDA
STA

JMP

IPA AO
#OE

VEC TAB,X

JMP1

VEC TAB,X
JMP1+1

(JMP1)

| —p | DEVICES INTERRUPT INPUTS
[
—>
—~ AAAAAAAI
P PRIORITY
P ENCODER

Priority Encoder to Peripheral Interface Scheme
FIGURE 2.14b

Receive Interrupt Vector

Read PIA Port
Clear PIA
Transfer Acc. to X index reg.

Load Acc. from Interrupt Vector Table
stored in memory

Set Low Order Address Byte of Interrupt
Vector

Increment X Index Register
Load Acc. from Interrupt Vector Table

Set high order Address Byte of Interrupt
Vector

Go to Interrupt Service Software

Software Program to Implement Interrupt from above Hardware Configuration
FIGURE 2.15

times than that required by the microprocessor when operation at 1MHz
clock frequency and are incapable of making data available on the data
bus within 100 nanoseconds of the end of the Phase Two clock pulse. The
Phase Two clock pulse is used to latch data or instructions on the data
bus; therefore, if the data is not available at the correct time, the
processor must be held up for one full cycle. The instruction will then be
latched on the following Phase Two pulse. Execution of the instruction will
then proceed during the next cycle. Suggested logic for performing this
function is shown in Figure 2.16.

Note that the data present on the data bus during the @2 clock pulse
after RDY goes high is the data that will be used in the instruction

execution which takes place during the following cycle.

2.3.4.2 Direct Memory Address (DMA) Techniques

Transfer of data from peripheral storage devices into the microcomputer
data memory (RAM) can normally be handled one byte at a time under
control of the microprocessor. However, in large data terminals, control
systems, etc. the primary data storage device may be a high-speed tape
or disk. In systems such as these, the data transfer from the storage device
into memory must be performed at speeds greater than the processor
can handle. The control of the transfer must be performed outside of the
processor in a separate controller and the peripheral device must gain
direct access to the system RAM.

Direct Memory Access requires primarily that the processor have no need
to access the memory involved. This is generally assured by stopping the
processor completely. The DMA controller must then gain access to the
R/W line and both the address and data busses on the memory unit.

Provision for stopping the processor is available on the MCS6501,
MCS6502 and MCS6505. This is accomplished by pulling the RDY line on
the processor to GND (< 0.4V). The processor will stop in the first non-
write cycle with the data bus in the high-impedance state. After the
processor has stopped, the DMA controller must provide the address and
data for the memory and must control R/W if data is being transferred
info memory.

Providing addresses for the memories can be accomplished by gating
addresses from either the DMA controller or the microprocessor into the
memories. This can be accomplished very easily with a Quad 2-input data

112

selector. During the DMA operation, the addresses fed to the memories are
those generated by the DMA controller. After the DMA operation is
complete, the input select signal to the data selector is inverted and the
addresses generated by the processor once again determine which memory
word is being accessed. The R/W line to the memories can be controlled in
the same way as the address lines.

The data bus must be controlled in a somewhat different manner. This is
necessitated by the fact that these lines are "bi-directional"; the data bus
pins on the processor and the support chips act as both an input and an
output. The output buffers in each of these chips are capable of entering a
high impedance state to allow any of the devices to drive the bus during
data and instruction transfers. For this reason, a bi-directional, "three-state”
bus extender is required to interface the DMA controller to the system data
bus. The logic necessary to provide full address bus and data bus control for
DMA applications is shown in Figure 2.17.

The MCS6501 provides a Bus Available output to signal the DMA controller
that the processor has stopped and that the DMA controller can proceed to
access memory for reading and writing data. This signal will go high during
the Phase Two clock in the first Read cycle (R/W = 1) which follows RDY
going low. This will occur immediately if RDY is pulled to GND (< 0.4V)
during a Read cycle. The discussion of the processors in Section 1 describes
this in detail.

The MCS6502, MCS6503, MCS6504 and MCS6505 do not make available
the Bus Available signal. However, these processors still stop in the first non-
write cycle. For this reason, the logic shown in Figure 2.17 should be used to
generate a Bus Available signal for the DMA controller.

2.3.4.3 Control of Dynamic RAMs in the MCS6500 System

For systems which must contain a large quantity of Read/Write memory
(RAM), the 4096-bit dynamic RAMs can provide the required storage with
a minimum number of parts. Currently available dynamic RAMs are
capable of storing four times as much data as similar static devices.
However, there is one major drawback to these devices — they must be
refreshed periodically. For most devices currently available, this refresh
period is about 2 milliseconds for the entire chip. Refreshing the entire chip

113

— "J-K" FLIP-FLOP
—
ADDRESS | _pn| PROM ADDRESS)
LINES : DETECTION *
do
—>
— K Q RDY
®1 CLOcK T
Interfacing Scheme for Slow PROM's
FIGURE 2.16
"D" TYPE
R/W | FLIP-FLOP
RDY a[>)o 10 Qr—
PHASE 2 oC Q BA

Logic Used to Generate Bus Available Signal for DMA Applications

FIGURE 2.17

114

requires 32 Read operations which can be performed all at once every
2 milliseconds, or 1 approximately every 64 microseconds.

Unless a separate controller is used to perform this refresh operation, the
use of dynamic memories can be very detrimental to system performance.

As with any Direct Memory Access, the processor must be stopped to
assure that the processor and the DMA controller are not attempting to
access the memories concurrently. The RDY input provides this capability.
A counter operating directly from the system clock will provide a very
convenient refresh signal. Each time the counter goes through a count of
63, a "refresh request” pulse is generated. The actual memory refresh
operation must take place during a Read operation with the processor
stopped for 1 cycle. Determining when the processor has stopped is
exactly the same problem as in DMA operations. The MCS6501 will
generate a Bus Available pulse when the processor has stopped. In the
other processors, the controller must pull the RDY line low and must then
examine the R/W line to determine when the processor is in a Read cycle.

The specific operation performed during the refresh cycle is a function of
the devices being used. However, it should be noted the time available
for refreshing the memory is "N - 2" cycles, where N is the number of
cycles that the processor is stopped. This formula is based on the fact that
the first half cycle is lost due to the fact that BA does not go high until ®2
in the MCS6501 and that the state of the R/W line cannot be considered
valid until ®2. Control of the memory address lines must be returned to
the processor at the beginning of @ if the memories are to have a full
cycle to make valid data available on the data bus. This leaves one-half
cycle available to perform the refresh operation if the processor is
stopped for one cycle. A full 1-V2 cycles can be made available by
stopping the processor for two cycles. This latter implementation is more
compatible with most dynamic RAMs currently available.

As described above, a primary problem in the implementation of dynamic
RAM systems is knowing when the processor has stopped. A full one-half
cycle is required in the implementations described above. The MCS6502,
however, provides a signal which can be used to predict that the processor
will stop in the very next cycle. This is the SYNC signal. It is impossible

115

for a Write operation to immediately follow an instruction fetch cycle.
This allows the memory refresh controller to assume control of the address
lines at the beginning of that cycle instead of after the trailing edge of

(O]N

The RDY line is pulled low on @1 and the processor is guaranteed to stop.
Control of the address lines is returned to the processor on the next O
and RDY is set high at the same time. The result is the refresh logic had a
full 1 cycle to refresh the memories and the processor lost only 1 cycle of

execution time. A suggested configuration for this control logic is shown in
Figure 2.18.

REFRESH
GRANT

REFRESH N\
REQUEST D Q D (TO RDY AND
SYNC — CONTROY
—o| C —JC Q
Y]

Control Logic for Refresh Signal for Dynamic RAMS
FIGURE 2.18

116

2.3.5 Hold-Time Control — MCS6501

The data bus hold time required by the MCS6500 family parts is defined
in Chapter 1. Each chip in the system requires that the data on the data
bus be held for 10 nanoseconds past the trailing edge of the Phase Two
clock pulse. Also, each device is guaranteed to hold data for this length
of time to assure proper operation of the other devices in the system. This
only assures that the family parts will work together. Operating with other
RAMs and peripheral devices requires that a careful study be made of
the timing requirements. This section discusses techniques for properly
interfacing RAMs which require more than 10ns hold time guaranteed by
the processor. These techniques are applicable primarily to the MCS6501
since this device uses the input clocks and the DBE input.

The data which is to be written into memory is actually available on the inputs
to the processor data bus buffers from the beginning of the Phase One clock
pulse. This data is normally gated onto the bus during Phase Two. However,
if greater hold time is required, the designer can take advantage of the
fact that this data can really be gated out during Phase One. This
requires that a delay be provided between the Phase Two and Phase
One clock pulses. The DBE output can then be connected to a Phase One
pulse to cause the data to remain on the bus past Phase Two pulse which
is used to latch data in memory. This timing is shown in Figure 2.19.

117

7
[S R I
ADDRESS BUS X X
R/W — —
DBE (1) | |
DATA BUS :
—»| |«— EXTRAHOLDTIME

Timing Analysis of Data Hold Time
FIGURE 2.19

118

2.4 ADDITIONAL SYSTEM CONSIDERATIONS

After the basic system configuration is complete, extensive
breadboarding and testing is usually required before the design is
finalized. However, this breadboarding and evaluation must be
preceded by a complete evaluation of the cost and performance of the
proposed design to assure that the various goals of the project will be
met.

The first step in evaluating the design is to estimate the amount of ROM

and RAM which will be required and to estimate the number and type of
interface devices required to control the peripherals

2.4.1 Peripheral Interface Devices

The number and type of peripheral devices can generally be estimated
very accurately. However, it is important to keep in mind that these
estimates must be subject to review after a full analysis of system
performance is completed. The designer may find it necessary to use a
special-purpose interface part or to redesign the |/O structure if the
evaluation of system performance reveals that the system cannot operate
at the required speed. Use of special-purpose peripheral interface parts
will reduce the number of tasks which must be handled by the processor
and consequently can increase the overall system speed, but this
generally involves additional component cost.

Likewise, the use of a fully vectored interrupt can lead to increased
performance at increased cost. The goal of any design program must be
to meet all the system performance at the minimum possible cost.

After the various peripheral devices in the system have been evaluated
to determine the number of inputs and outputs required, the total required
by all peripherals can be divided by 16 to determine the number of
devices required. This is a good first approximation which will be re-
evaluated as the system development progresses.

2.4.2 RAM

The evaluation of the amount of RAM required by the system is a
somewhat more difficult problem than estimation of peripheral devices.
This is due primarily to the fact that much of the RAM is required by the
system software as working storage, such as storage of immediate results in

119

arithmetic operations. Since the system program will probably not be
written when these estimates are first attempted, the probability of error
in this portion of the estimate may be fairly high.

In addition to working storage, the RAM must provide storage for:

1. The Stack; this is described in the Programming Manual.
2. Peripheral input data storage.
3. Peripheral output data storage.

ltems 2 and 3 above can be evaluated quite accurately since a detailed
analysis of the peripheral devices has usually been completed when these
estimates are first attempted. In general, a block of RAM must be made
available for each peripheral device. The amount of RAM required for
each is a function of the type of peripheral device being interfaced and
just how the device is to be controlled.

The amount of RAM required by the stack is a function of both the
interrupt structure and the system software. As a result, an estimate of this
requirement must be based on the system programmer's best estimates
of his requirements. This should be combined with an estimate of the
required working storage and the peripheral data storage requirements
to obtain an estimate of the total system RAM.

2.4.3 ROM

The amount of ROM required in a system cannot be determined
accurately until the system program is completed. However, by
partitioning the system program into definable pieces, an estimate can
be made of each task and the total can be obtained of the ROM required
by each section.

Most programs consist of easily defined sections such as the software for

each peripheral device, arithmetic routines, etc. These are the pieces which
should be examined separately to estimate the ROM required by each.

120

2.5 EVALUATING SYSTEM PERFORMANCE

As discussed in the previous section, the peripheral interface structure for a
system is fairly easy to configure if one assumes that MCS6520-type devices
are used. However, before going too far into hardware construction, it is
important that the total system performance be evaluated to minimize the
probability that major problems will arise in the later stages of the design.

Evaluating system performance involves first determining whether or not the
processor is capable of processing all interrupts with the speed required and
then determining that the processor has sufficient time to perform non-
interrupt operations.

The prioritized interrupt structure assumes that at times, more than one
interrupt will occur and that there will be delays encountered in servicing
some interrupts caused by the presence of other interrupts. This structure will
perform satisfactorily if these delays are not too great.

The interrupt processing time should be evaluated starting with the highest
priority interrupt, then going to the next highest priority, each time keeping
in mind the total time which can be lost due to concurrent higher priority
interrupts. Each time an interrupt is examined, the worst microprocessor
response time which can be encountered should be estimated. If this time is
still adequate for the function being handled by the interrupt, that aspect of
the system operation can be expected to perform satisfactorily.

The ability of the MCS650X microprocessors to handle interrupts quickly and
conveniently represents one of the real strengths of this microprocessor
family. However, in any system being developed, it is important that the
percentage of processor time spent servicing interrupts not be so large that
the internal data handling, arithmetic operations, etc. cannot be executed

properly.

Since the interrupts are usually asynchronous and are not related directly to
the main line program, the time lost to interrupts can usually be viewed as
an average percentage of the total time. The speed with which the main
program can be executed will be reduced by this percentage.

The interrupt service routines are usually short and easy to evaluate.

However, the main program is much more difficult to estimate. Fortunately,
it is also usually much less critical. Those operations which must meet a

121

particular speed requirement can be examined in detail by the
programmer to determine the execution time. This estimated execution
time must then be reduced to allow for the time lost to interrupts.

The final step to assuring satisfactory system performance is a worst-case
analysis. This is to determine if there are any places in the program where
worst-case interrupts can cause excessive delays in the execution of other
programs being executed. Although the effort involved in a complete
worst-case analysis is usually excessive, this is one part of the system
development task which can lead to significantly greater assurance of
success for the entire development process.

122

CHAPTER 3

BRINGING UP THE MCS6500 MICROCOMPUTER SYSTEM

3.0 INTRODUCTION TO MICROCOMPUTER TESTING

After many hours of planning, hardware construction, and programming
effort, the microcomputer system designer must face what can be his most
difficult task: "bringing up" his system. The modern microcomputer with its
minimum chip count, and its minimum number of control and data lines
represents a tremendous advance in system design when everything is
working properly. However, it can also represent a testing nightmare to
the designer who is attempting to trouble-shoot the hardware and
software which constitute the total design.

A microcomputer lacks many of the things which make testing of
conventional logic relatively convenient. To begin with, one simply cannot
see most of the control signals, data transfers, etc. which allow the system
to operate. In addition, it is impossible to examine directly the contents
of the registers and latches which store data within the processor. This
data can only be examined indirectly by looking at the signals on the
inputs and outputs to the chip at the proper time.

This problem is compounded by the fact that many programs must be
tested "dynamically"; i.e., the system must be running at its full operating
speed with non-recurring events or with a total lack of usable oscilloscope
triggering signals.

For these and many other reasons, it is important that the system designer
build effective testing capability into both his hardware and his software.
This is particularly true for the pre-production prototypes. When
combined with the procedures discussed below, this will minimize both the
time and the effort spent in producing that first operational system. After
the program and the hardware are completely debugged, many of the
testing tools discussed below can be removed from the prototype design
without affecting system performance. This allows the designer to arrive
at his final production design very shortly after he has proven that the
prototypes are operating satisfactorily.

123

3.1 STATIC TESTING

3.1.1 Introduction

Static testing, i.e., execution of the program, one cycle or one instruction at a
time, is the first step in the checkout of any system. In this way, the general
flow of the program can be examined and for much of the program the
validity of data transfers into and out of memory can be verified. As shown
in Figure 3.1, the logic necessary to control RDY to allow Single Cycle and
Single Instruction Execution is relatively simple. This hardware and its use in
system testing are discussed below.

3.1.2 Single Cycle Execution

The timing required for Single Cycle Execution is shown in Figure 3.2. In this
operation, the RDY line has been brought low (GND) to halt the processor.
To allow execution of a single cycle, the RDY line goes high (+2.4V), for one
cycle each time the Single Cycle switch is activated. Note that the RDY line
goes high while the @1 clock is high and the internal timing counter advances
on the next ®1 clock pulse.

Single cycle operation allows stopping the processor in any cycle except a
WRITE cycle. This allows detailed examination of all cycles of the instruction fetch
operation. In addition, it permits detailed examination of operand fetches. Thus,
it is possible fo verify the operation of most of the hardware involved in memory
addressing and control. It is also possible to verify the operation of most of the
peripheral interface hardware. This can greatly reduce the time required to test
the full dynamic operation of the peripheral device.

Note that if depressing the Single Cycle switch allows the processor to advance
into a WRITE cycle, the processor will complete this cycle and will then stop in the
first READ cycle (R/W = 1) which follows. This timing is shown in Figure 3.2.

Appendix A contains a detailed summary of the data which should appear
on the address and data lines during each cycle of the MCS6501 and
MCS6502 instructions.

Note that the processor often puts out an address and fetches data which it
ignores. This is an inherent feature of the processor which uses a "look ahead"
approach to pipelining. Examination of the SYNC signal will allow the
designer to keep track of exactly when the data fetched from memory is
utilized within the processor and when it is ignored.

124

JO1D3TI0D N3dO
£0vL ANVN LNdNIFT 9
olvs ANVN LNdNIFE S
yovL JILIIANI i4
ZevL 40 INdNIFT €
VLivL dO1d-dnd .4, z
oovs ANVN LNdNI-T L

(SAV1dSIa 0v€£-280S

QAVIDOVA-LIFIMIH F1dWVX3)
319VN3 HDLV1 AV1dSIa OL

1°€ 34NDid

21607 [044u0)) §s3] dI44S paysabbng

314D ,ALRIM,

31VDIANI OL a1 N

M/Y

(wow) =

31DAD ,ONAS,

3LVDIANI OL @31
AS+
g

WAQY, ¥OSSID0¥JOIDIW OL

ON NOILDNJLSNI
FIONIS
0

ONAS

(2]

390901 =

o
HvH 0\\0I._| 1IVH/NNY

NNY

13533 W3LSAS OL

125

¢’ 34N9l4
Buiwiy 8124 8|buig

“IVNOIS MOTV Ag Q3LVDIANI SI NOILYNLDOV HOLIMS €

‘NMOHS SV MOT 4O HOIH NIVW3IY OL dV3IddV T1IM SNg V1VA FHL d3ddOLS SI §OSSIO0Yd FHL ITHM
¥IAIMOH “3STNd INO ISYHd HOVI ONIING ILVLS IDNVAIdWI-HOIH JHL S¥ILNI SN VIVA JHL T

“FONVHD TIIM TYNDIS FHL HOIHM ONIING OIY¥3d IWIL INIWYILIANN NV SILYDIANIS & *L ‘SILON
_ _ zl
| | L
_ l — oL
S3LVIS 4OSSIDOUd TVNIIINI
[_ M/
! {C 1 L L ¢ 1
— AR —X o
Y 4§ 1Y 4§ ! snd viva
X X X X X X sNd ss3¥aav
L | | | _ AQY
(€ 31ON)

HDLIMS ,31DAD F1DNIS,
J| (€ 3LON)

4 § g HDLIMS ,L1VH,,

i rrrirrerfrrereriereferero o
5 s 1 e Y e Y N e N e o O ‘o

|

126

A very simple "data trap" can be built into prototype systems to allow
examination of the address and data generated by the processor during
WRITE cycles. This trap may latch the contents of both the address and
data busses or it may latch only the address bus. The latter can be
sufficient if a separate means of examining data in memory is provided
(see Section 3.3). A suggested configuration for the "data trap” is shown
in Figure 3.3. This circuit can be used to display the contents of the
address and data busses for both READ and WRITE cycles. The WRITE
data is latched and held during the next READ cycle. Depressing the Latch
Reset switch then opens the inputs to the latches and allows monitoring of
the subsequent READ cycles.

3.1.3 Single Instruction Execution

While it is extremely useful to be able to analyze the execution of each
instruction in detail, it is often sufficient just to look at the general program
flow. This is particularly useful when examining the operation of branches
and jumps in a program. Single instruction execution is designed to allow
this capability on the MCS6502 which outputs a SYNC signal.

The operation of the single instruction execution logic is based on
generation of a SYNC signal within the processor. This signal goes high
(> +2.4v DC) during each OP CODE fetch cycle. Single instruction
execution is implemented by using SYNC to force RDY low (< +0.4V DC).
Under these conditions, the processor will always stop with an OP CODE
address on the address bus and the OP CODE on the data bus. The timing
for this operation is shown in Figure 3.4. Note that this diagram assumes
that the processor is stopped in an OP CODE fetch cycle. Depressing the
Single Instruction switch (Figure 3.1) allows execution of that instruction.
The processor then stops when the next OP CODE is fetched.

127

ABO
AB1
AB2
AB3
AB4
AB5
AB6
AB7

AB8

AB9

AB10
AB11
AB12
AB13
AB14
AB15

DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7

RUN

8 BIT LATCH

8 BIT LATCH

8 BIT LATCH

W$3—0C

ABO
AB1
AB2
AB3
AB4
AB5
AB6
AB7

AB8

AB9

AB10
AB11
AB12
AB13
AB14
AB15

DBO
DB1
DB2
DB3
DB4
DB5
DB6
DB7

TO TEST POINTS, LAMPS, OR HEX. DISPLAYS

q RESET LATCH

_rD

D TYPE FLIP-FLOP

Microprocessor Single Cycle Data Trap

FIGURE 3.3

128

v°€ 3dNSl4
uonndex3 uoydnysu| o|buig

Ol NI
d3ddols NOILDNYLSNI a3iddols ONINNNY
JOSSIDOUd A131dWOD 3LND3X3 JOSSID0Ud JOSSID0Ud
————————— { (4
{ C
) J
, \ Cl
{ (4
7 NN 1L
|L { (4 OH
Pl J
[. . ONAS
Pl J
{ C
I \ ’ ’ AQd
{ §
_ ‘MS “LSNI "ONIS
p _ HDLIMS L1VH
)

129

3.2 DYNAMIC TESTING

3.2.1 Introduction

Through static testing techniques, the designer should be able to verify the
operation of most of his processor interface hardware, such as the Bus
Expanders and Address Decoders (for selecting ROMs, RAMs, etc.).
However, this is only a first step to assuring proper system operation. Most
peripheral devices cannot be properly tested unless the processor is
operating at full speed. This necessitates full dynamic testing.

Dynamic testing generally involves causing the processor to execute a
program loop, i.e., to execute a repetitive sequence of instructions. This
allows the use of an oscilloscope in examining the processor operation. This
repetitive operation can be externally induced through the RES or Interrupt
(IRQ or NMI) lines, or it can be a part of the program being executed. Both
techniques play an important role in the system checkout process.

3.2.2 Externally Induced Loops

The most direct means of causing the processor to execute a loop is to drive
one of the direct inputs (RES, IRQ or NMI) with a signal generator. This
technique can be used to trouble-shoot systems which are only partially
operational since it does not rely on proper execution of a particular set of
instructions to cause looping to occur. However, this technique can only be
used if an oscilloscope can be employed in examining system operation. To
do so requires an effective scope-synchronizing signal. For this reason, the
following section will discuss not only the signals to be tested and the
waveforms which one should see but also the techniques one may use to
assure generation of an effective scope sync.

Probably the most basic operation performed within the processor is the
RESET function. Without the RESET hardware and software operating
properly, the system will never enter its normal operating mode. For this
reason, the first major function to be tested, both statically and dynamically,
is the RES input.

A suggested configuration for dynamically testing the RESET input is shown
in Figure 3.5. In this diagram, the RESET input is being driven from a signal
generator. Between the signal generator and the processor is a D-type flip-
flop to synchronize the chip reset signal to the processor clocks.

130

+5V

FROM SIGNAL
GENERATOR

®2 ——a ¢

FROM POWER-ON TO SYSTEM (FS)
RESET RESET

0 o o{
L MANUAL
= RESET

Suggested Configuration for Dynamic Reset Testing
FIGURE 3.5

131

This synchronizing is extremely important because it stabilizes the data
being displayed on the oscilloscope with respect to the scope sync.

The most effective procedure for testing the dynamic operation of the
RESET function is to reset the system initially at a rate of approximately
one-fifth of the clock rate. This will allow the processor to execute the first
few instructions in the reset sequence before being recycled. The designer
can then closely examine the timing of address, data and R/W signals.
Use of the delayed sweep feature available on most modern
oscilloscopes will allow examination of any part of the RESET operation.

When proper operation of the RESET input has been verified, the same
technique can be applied to both the IRQ and the NMI inputs. Driving
either of these inputs with a signal generator synchronized to the
processor clocks will allow a close examination of the dynamic operation
of the interrupt polling sequence. This provides a very important look at
the Peripheral Interface selection logic to assure that all peripheral
devices are responding to the proper address.

3.2.3 Software Loops

During system checkout, the designer must verify the operation of many
simple functions which must all operate properly before the entire system
is operational. The use of simple software loops will allow a detailed
examination of one function at a time. Most importantly, it allows the
designer to use an oscilloscope to examine events which may occur very
infrequently and which are normally very difficult to see.

The execution of software loop requires the writing of a program which
ends in a JMP back to the beginning of the program. Once the processor
enters the loop it will continue to execute the same sequence of instructions
until the RESET switch is pushed.

To utilize software loops effectively there must be an event which
happens only once each time the processor executes the loop. This signal
can be used to trigger the oscilloscope. Including a single WRITE
operation in the program allows the R/W signal to be used to trigger the
scope. Likewise, careful selection of address in the program will allow use
of an address line as a scope sync. Finally, lacking anything else, setting
and resetting a peripheral interface device output pin at the beginning
of the program provides a very effective sync signal.

132

3.3 SYSTEM DIAGNOSIS USING HARDWARE PROGRAMMER AIDS

In addition to the techniques described in which the user utilizes
oscilloscopes and his own innovative techniques for analyzing data, MOS
Technology, Inc. makes available to the user several hardware aids which
assist in debugging of a microcomputer system and also a software aid
called the emulator. The hardware aids are a Keyboard Input Monitor
(KIM), a Teletype Input Monitor (TIM), and a Microcomputer Development
Terminal (MDT). Each of these aids is designed to allow the debugging
of microprocessor code without need to resort to scopes or other data
trapping techniques, but rather attempts to reduce the problem of
debugging the code to the same techniques that are available on a large
computer system.

The basic assumption of each of these devices, either hardware or
software, is that the microprocessor system is connected correctly, all the
electrical characteristics have already been checked and met and that
the only problem to be solved is one of debugging programs and 1/O
hardware which have been entered into the microcomputer.

Each of the hardware techniques assumes that the user will start his design
sequence with all of his programming being done in some form of random
access memory which is loadable from an /O device, examinable by the
I/O device and changeable by the 1/O device. This is the normal first
step in developing a microcomputer system and one that should be used
prior to committing any of the hardware to PROMs or alterable memory.
The only exception to this is if the user is taking advantage of the software
emulator and if his program is such that the emulator can give him a
significant degree of confidence in his coding in which case the use of the
KIM or TIM devices is primarily that of allowing him to have final
debugging access to his various memory locations. Therefore, the
common characteristic of all these approaches is that by some
technique, in the case of the Emulator by reading an input file, in the
case of TIM by reading in an input tape from the output Cross-
Assembler, in the case of KIM loading a program into memory by
hand, and in the case of MDT either assembling the program or
loading input data from the Cross-Assembler, the program has been
entered into a program storage. Each of these techniques allows the user to

133

initialize various memory and register locations and to "start execution" of
this program at a memory location. Techniques are implemented which allow
the user to stop his program at a particular point and analyze the results of
the operations which have just been completed. If the results are correct, the
coding between the start point and the stop point is correct. If the coding is
incorrect, the user analyzes the data which he displays by use of the I/O
device and the hardware or software that interfaces it, and determines by
inspection of the data and analysis of his coding what error could cause the
results detected.

If the technique of just analyzing coding is not sufficient, each of these systems
has the ability to allow the user to go in and re-execute the code with new
data or the original data, only stopping at earlier stop points until he is able
to trap the operation that causes the erroneous data to occur. Both the
emulator and MDT have additional features which allow the user to analyze
the operation of instructions as they occur which is very useful in determining
which part of the program causes operations to be performed incorrectly.

The normal design cycle should actually include a combination of techniques.
If the user is not using MDT, then he should write his code on a Cross-
Assembler and debug much of his loops and non-1/O programming using the
Emulator. The Emulator has been designed to allow very easy analysis of
data paths, loops and performance of program on a non-hardware basis. It
is particularly useful for the user who is developing routines which have
significant loop and subroutining or any completed algorithm.

The use of emulation has the following advantages:

1. It gives the power of a large machine to allow tracing operations
which are not very feasible at the hardware level.

2. It may indicate prior to the time that the hardware is committed that
more memory or more time is required to perform an operation
which may dramatically change the hardware implementation which
is to be committed.

In any case, attempting to bring up the microprocessor system without use of
assemblers and an interface module such as TIM is not the most efficient use
of the designer's time. For the user who is just starting in microprocessors, the
KIM technique is acceptable because the length and complexibility of the
programs to be written should be shorter and the user can program directly
in Hex and debug using the KIM exclusively.

134

3.3.1 KIM — Keyboard Input Monitor

KIM allows the user to key in Hex values into specified memory locations and
to monitor results.

KIM is available to the system designer in several forms. In its simplest form,
a single device of the MCS6530 type including 1024 bytes of pre-
programmed ROM may be included as a component in an existing system.
The KIM array includes a monitor program which provides the following
features:

a)

b)
<)

Data input and output control from serial teletypewriters (ASR 33,
Silent 700, etc.)

Data input and system control from a 22-key keyboard.

Address and data display on a 6-digit, 7-segment type display.

A microprocessor system designed to include the KIM array will allow the
designer to perform the following operations:

a)

b)

d)

The user may select keyboard (KB) or teletypewriter for entry,
display and control.

If in KB mode, the user may enter address or data fields from the
Keyboard. The user may display the contents of any address
location in the system and can modify the contents of any address
location (other than pre-programmed ROM locations). The step
operation (STEP key) provides a convenient method for displaying
the data contained in successive memory locations. Program
execution may be authorized to begin from any selected starting
address using the RUN key.

If in the TTY mode, the user may obtain a printing of the data at
any memory location. He can modify the data contained in any
memory location. Program listing from any start address to any end
address may be authorized. Paper tapes may be loaded or
generated automatically. Finally, program execution may be
initiated from any selected starting address.

In either mode, the user terminates program execution using the
STOP key which will return control of the system to the KIM program.
Alternatively, a depression of the RST key causes a total reset of
the system and a return of the system to KIM program control.

The KIM array is also available to the system designer as a part of a special
design-in sub-system provided in the form of a printed circuit card. Included
on this card are the following functional elements:

135

a) MCS6502 microprocessor array

b) MCS6530-002 array (containing the KIM monitor program)

c) 22-key keyboard and mode-select switch

d) 6-digit, 7-segment LED display

e) 1024 x 8 RAM

f) MCS6530-003 array providing an interval timer, 16 1/O pins,
and 64 bytes of RAM

g) Allinterface circuits for operation with serial teletypewriters.

This subsystem provides the same operating features described earlier
but is supplied as an operating unit requiring the user to provide only the
+5 volt power supply in order to commence operating. As a "stand-
alone" subsystem, the user may enter and debug programs of up to 1024
steps and control the action of up to 16 1/O pins.

For further details on physical and operating characteristics of the KIM

array and subsystem, the reader is referred to the KIM manual supplied
separately.

3.3.2 TIM — Teletype Input Monitor

TIM is a pre-programmed MCS6530. The application of the Teletype
Input Monitor is to allow the user to interface to an ASCII device such as
a Teletype, CRT, Execuport, etc. using the ASCII serial communication
techniques to communicate to and from the microprocessor. This
effectively allows the user to load memory from the keyboard or from
paper tape or cassettes which are attached to his device. By the addition
of a single TTL package to the system, TIM can be configured so that it is
the starting point for the microprocessor, but once the initialization has
been accomplished it transfers itself out of the start-up memory, changes
the rest of the microprocessor memory to normal configuration and
operates transparent to the microprocessor.

The technique for using the TIM to develop a microprocessor system is
primarily after the system is determined to be wired correctly by the
techniques already described. It is then used to debug the user's code by
means of allowing the user to input pre-specified values, execute portions
of the code and examine the results.

It should be noted that because |/O devices are extension of memory,
debugging techniques are simplified. They can be configured to

136

control 1/O devices to test that lights can be lit, switches tested, motors
started and stopped, etc. For instance, all of the connections to lights and
switches can be checked from the teletype keyboard by writing into the
I/O registers the appropriate code that turns on the lights. Correct
operation of switches can be checked without the program running by
putting the switches in either state and reading the 1/O device result
indicated to the programmer. This type of checking totally shakes out the
I/O connections to make sure the |/O device is located in the correct
memory address, determines that the wiring to the I/O devices is correct
and checks on the microprocessor bus.

A rational technique for using either TIM or KIM is to interconnect the
device into the system to get the microprocessor to pass the single-step
start-up sequence and then to use the debugging capability of the TIM
prior to executing any of the user's code to verify that all input/output
connections are correct. In cases such as stopping motors and other
devices which require timing, the proper connection to the motors and
other devices can be checked without the motor itself physically being
checked by unconnecting leads, opening up connectors and verifying with
a scope or a meter that the microprocessor's influence at that point is as
would be expected on a static basis. Therefore, this technique is
recommended as the second step of a start-up sequence.

Significant details are given in the section on the use of restart or start
sequence and a single cycle operation to verify the interconnection of
most of the system. It should be recalled that the instructions were given
independent of the coding that was available to the programmer.

The advantage of using the TIM or KIM in the start-up check-out is that
there is known code which is guaranteed to be accurate that should
be evoked during this start-up sequence. By looking at the coding of
the ROM as it appears in the documentation on the TIM or KIM, the
user can use the known sequences from the TIM or KIM program to
verify the start-up sequence, thereby removing one more variable.
Therefore, all initial systems check-out should be done using TIM
or KIM program first in the start-up sequence to make sure that
the interconnection to TIM and to memory are correct. Then once
the basic operation of TIM has been verified, there is a known
sequence that the TIM will go through dynamically which will allow
the user to verify that the TIM is operational. Then the user should

137

verify the rest of his memory and 1/O connections by use of writing and
reading in the memory locations using the debugging feature of the TIM
or KIM. This verifies the connection and operation of each of the chips of
the system and will verify all the interconnections to all outboard devices.

Now the problem is truly reduced to making sure that the programmer's
code is correct and the user's program can be loaded by means of either
through-the-keyboard or through-the-auxiliary devices.

The program can be debugged as a program rather than worrying about
whether or not the problem is one of hardware or software. By definition
other than incorrect timing to 1/O devices, the problem has been reduced
to one of programming mistakes.

For a more detailed discussion on the programming on TIM, the user is
referred to the TIM manual supplied separately.

3.3.3 MDT — Microcomputer Development Terminal

Almost all of the sections in this report had to do with how one goes about
interconnecting a system and debugging it. MDT is a prepackaged system
and, therefore, should not have the problems described above unless it is
being used in circuit emulation mode. Therefore, the user will primarily be
debugging his programs and his basic interconnection to his I/O devices
with the MDT. Therefore, use of the MDT represents a significantly
different technique than described in this manual. This technique is
described in the MDT manual.

138

3.4 MICROPROCESSOR START-UP PROCEDURE

3.4.1 Introduction

This section attempts to tie together all of the techniques previously discussed
into one ordered procedure. This procedure is based on experience gained
in bringing up systems using processors from several different manufacturers.
While it is certainly true that no single procedure can be expected to catch
all the software and hardware errors which can exist in microcomputer
systems, it is hoped that this step-by-step approach will allow the designer
to bring up his system with an absolute minimum of difficulty.

This procedure assumes the existence of Single Cycle and/or Single
Instruction logic. Any of the System Development tools discussed in Section
3.3 will assist the user in bringing up his system. These devices allow
convenient entry of test programs as well as modification of the system
program and data.

Each step in the procedure includes the following information:

Section of the System hardware /software to be checked.
Hardware, test equipment, etc. required to perform the test.
Action to be taken in implementing the test.

Expected results.

Suggested procedures for analyzing failure modes.

It cannot be emphasized too strongly that one must utilize a very methodical,
step-by-step procedure aimed at solving one problem at a time within the
system. It is very easy for several problems to amplify each other to such an
extent that nothing within the system seems to be operating properly.
Correcting problems one at a time will ultimately yield a complete working
system with minimum frustration.

3.4.2 System Power — Step 1

It is generally recommended that first prototypes of microcomputer systems
be built using sockets for the ICs (processor, memories, etc.). One distinct
advantage of this technique is that it allows the designer to verify
that Vop and Vss are properly connected to each socket before the chips are
inserted. The Voo line should be within the tolerances specified about the 5
volt nominal relative to Vss: This basic first step can help avoid power supply
connections which may be fatal to the chips in the system.

139

After using a voltmeter or oscilloscope to check power connections, insert the
processor into its socket and verify that the additional current drain is within
specifications for this device.

Before inserting the other devices, examine the address lines, SYNC line (6502)
and the output clocks (6502, 6503) to make sure that the processor is
generating signals. The address lines should be incrementing and the SYNC
line should be generating regular, positive going pulses. The RES line and the
RDY line should be high (> +2.4V) for this test.

If the processor appears to be operating and power consumption is
reasonable, the rest of the devices in the system can be inserted into their

sockets.

3.4.3 Basic System Timing — Step 2

Before one can expect a microprocessor system to function, proper operation
of the basic system timing signals (01, ©-, etc.) must be verified. The most
important of these signals is the system clock.

A common fault in MC6800 and MCS6501 systems is generation of input
clocks (D1 and @2) which are not full voltage or which have significant overlap.
Another very serious difficulty often encountered is undershoot. Each of the
specifications listed in the data sheet for the system clocks must be properly
met. Figure 3.6a illustrates the problems often encountered in clock signals such
as undershoot and overlap. Figure 3.6b is an example of MCS6501 @1 and
@2 clocks as they would normally appear in a properly operating system.

In systems based on other than the MCS6501, the clocks which must be
examined are the processor output clocks. In the 6502, both phases (01 and
@2) are available for driving the rest of the system. In this system it is necessary
to check the clock timing very carefully to assure that the timing of the clock
signals within the processor is compatible with that used on the support chips.

Using an oscilloscope, compare the ®1, input clock and the 2 clock presented
to the support chips to verify that the delay due to clock buffering does not
exceed the allowable maximum.

3.4.4 System Reset — Step 3

Static and dynamic analysis of the Reset function can provide very
detailed information on how the system is operating. In fact, it is this

140

Improper Clocks (Note undershoot and overlap)
FIGURE 3.6a

Proper Clocks
FIGURE 3.6b

MCS6501
Clock Timing Signals
FIGURE 3.6

141

1

4

ADDRESS BUS LINE

ADDRESS BUS LINE

i

Proper Address Lines
FIGURE 3.7a

&

ADDRESS BUS LINE

ADDRESS BUS LINE

i

Excess Address Lines Loading

FIGURE 3.7b

Address Lines in MCS650X Systems
FIGURE 3.7

142

O

02

DATA BUS LINE

DATA BUS LINE

02

R/W
DATA BUS LINE

DATA BUS LINE

The Data Bus in MCS650X Systems
FIGURE 3.8

143

step which will verify the operation of most of the basic system hardware.
The tools required are:

e Single Cycle/Single Instruction Logic
e Oscilloscope

e Signal generator (for driving RESET)

3.4.4.1 Static Analysis of System Details

Depress the HALT button and then the manual RESET switch; then push the
single cycle switch six times. This will step the processor through the first
part of the BRK sequence and into the RESET vector fetch. At this time the
processor should be generating FFFC on the address bus and the ROM
should have put the low order byte of the RESET vector onto the data bus
in response to this address. This is an excellent time to check the following
very basic items:

A. Address Lines:

Using the oscilloscope, verify that the logic levels on the address lines
are proper and that they are reflected properly through any bus
expanders onto the memory and peripheral chips. This is a very
important test since improper implementation of bus expanders is a
very common circuit fault.

B. ROM/PROM chip selects:
Using the oscilloscope, verify that the address FFFC does select the
ROM which contains the low order byte of the RESET vector.

C. Data Bus:

Using the oscilloscope, verify that the voltages on the data bus pins
of the processor are proper. It is important that these signals be
analyzed at the processor to assure proper operation of any bi-
directional bus expanders in the system. In this test, the most common
indication of improper operation of the data bus expanders is
"floating" processor data bus pins, i.e., the processor data bus pins
are being driven neither high nor low because the bus expanders are
in the open-circuit condition or are reversed.

144

D. Miscellaneous Processor Pins:

Using the oscilloscope, briefly examine the other processor pins
(R/W, IRQ, NMI, etfc.) to assure that there are no voltage level
problems detectable at this point. Both of the interrupt inputs and the
R/W output should be high. Examine the R/W signal on the input to
the memory and peripheral devices.

After these initial tests are complete, it should be possible to press the
single step switch once more to fetch the high order byte of the interrupt
vector from address FFFD. On the next actuation of the single cycle switch,
the processor address bus should contain the RESET vector which was
fetched from memory.

At this point, the processor is ready to execute the system initialization
routine. During initialization, it can be expected that program memory
will be accessed, peripheral registers will be loaded, and internal
processor registers will be cleared or set to a starting value. It is
extremely useful to execute this routine one instruction at a time to
determine that each time program memory is accessed, the proper
instruction is returned. However, unless a data trap is provided, it will be
more meaningful to utilize dynamic analysis techniques to analyze the
operation of peripheral devices, since most peripheral accesses will be
for the purpose of writing either the 1/O control or the control registers in
the peripheral devices.

3.4.4.2 Dynamic Analysis of System Details

The general technique of dynamic analysis is discussed in Section 3.2. The
discussion which follows will use this technique to analyze many of the
details of the system operation.

Set up the system as described in Section 3.2.2. After the test equipment

is operating properly, most of the system operation can be verified using
only the oscilloscope.

3.4.4.2.1 Address Bus Verification

The first item which must be checked is the specific timing of the
address lines. These lines will change during the first part of ®1 but after
the specified period, they should stabilize and remain stable through

145

the rest of the cycle. Figure 3.7a shows the waveform which one should
expect to see while examining @1, @2 and two address lines. In this
illustration, one address line is going high and the other is going low.
These lines are being generated within the processor and are guaranteed
to operate properly provided the total loading on the pins is within
specifications. The most common cause of both voltage level and rise time
problems is overloading. Voltage level problems are commonly
evidenced by the "zero" level being too high, i.e., the address buffer is
being asked to sink too much current. Excess capacitance is usually
evidenced by the rise and fall times being too long (Figure 3.7b).

In examining the address lines, it is important that the data be examined
on the processor and directly on the various support chips. This will assure
that any bus expanders in the system are operating properly and that
the addresses are valid where they are actually being used.

3.4.4.2.2 Data Bus Verification

After the addresses have been verified, the next step is to examine the
data bus to verify the validity of data being transferred both from the
processor to the support chips and from the support chips back into the
processor.

Figure 3.8 illustrates the waveform which one can expect to see on the
data bus lines. It is very important to note that during @1, there is no way
to predict the voltage on the data bus since neither the processor nor the
support chips are driving these lines. However, during ®2 the data bus
pins should go either high or low. It is only during @2 (high) that the
validity of the data can be verified.

Three very important parameters must be considered when examining
the data bus. These are the voltage levels, the time at which the data is
valid and the delay from the trailing edge of ®2 to data becoming
invalid.

A. Voltage Levels:

The logic levels on the processor data bus must always be greater than
2.4 volts for a logic 1 and less than 0.4 volts for a logic O. This is a very
basic concept but a quick check on these levels very early in the checkout
procedure can help the designer avoid hours of attempting to make a

146

system operate with signals which are actually marginal but which
on the surface appear to be satisfactory.

Another very important item to check is whether or not the logic "0"
voltage is actually going negative (below GND). It is very important
that the logic signals going into all the chip inputs not be allowed to
go below -0.3 volts as indicated in the specifications.

B. Data Valid Time:

The time at which data becomes valid indicates the total time which
the processor or memory has available to stabilize the gates and
latches used to trap the data within the chip. For this reason the data
must not take too long to reach either a valid high "1" or a valid low
"0." The primary cause of slow signals on the data bus is excessive
loading, either resistive or capacitive. Carefully check the devices
which are attached to the bus to make sure that the total loading is
within specifications.

C. Hold Time:

The last important consideration, hold time, is defined as the time
between the trailing edge of the @2 pulse and the point at which
data is no longer valid. A minimum of 10n sec hold time is required
for the processor to trap the data into its internal input latches. The
processor internal @2 pulse is used to gate the contents of the data
bus into these latches. Hold time is also required by the various
support chips within the system. Carefully check the signals as they
appear on the RAMs, ROMs, etc. to verify that each is being
operated in accordance with its specification.

147

3.4.5 Detailed Component Check

After the dynamic check of the reset routine, the next step is to attempt
to run the system program. The success of this operation will determine
whether or not a further detailed component check is necessary. It is
important to note that the checkout of the system program should proceed
one step at a time in much the same manner as we have approached the
hardware checkout. If a careful examination has been made of all of the
devices, data paths, etc. in the system, the software checkout can proceed
under the assumption that the hardware is fully operational. However, it
is inevitable that doubts will arise. There are times in the software
checkout process that the program will appear to be incorrect; data won't
be going into memory as it should or, in general, some hardware failure
will be indicated. As soon as this happens, the suspected components
should be examined in detdail. In keeping with the policy of "one step or
one problem at a time," it is important that potential hardware problems
not be allowed to invalidate the effort being put into the software
checkout.

Component problems can be one of two types: component failure, i.e., a
part not operating per specifications; or system failure, i.e., a part being
used wrong in the system. The latter problem can be a result of incorrect
system design or incorrect wiring. The problem of functional components
not operating properly in the system is the one which will be addressed
here. In fact, if there is any doubt about a component being functional, it
should be replaced immediately upon verification of proper signals to all
inputs. If it still does not operate properly, the problem is most likely
system related.

The detailed component check is performed most effectively by loading
a small looping program into the system RAM. For this reason, the TIM or
KIM debug software (see TIM and KIM Manuals) can be of significant
value in this process. The procedure involves static and dynamic operation
of a small test program which exercises each of the components in the
system. The goal of this step should be a complete verification that all
chip selects are operating properly, that all data address lines are
operating properly and that the support chips are driving the processor

properly.

148

The suggested procedure for checkout of each type of component
is discussed separately below.

A. ROMs (PROMS):

The most straightforward component in any microprocessor
system is the ROM. This device simply puts out an 8-bit word
onto the data bus in response to an address. Difficulty with
ROMs is usually caused by improper chip selects or by mis-
application of devices which are not part of the MCS6500
family. For this reason, static testing of ROMs is usually a very
effective first step. This requires entering a test program into
RAM and executing this program using the single cycle switch.
The program itself should simply perform a READ (for example,
an LDA or LDX instruction) of a selected word for each ROM
chip to be tested. The chip selects can then be examined and
at the same time, the address lines presented to the chips can
be examined along with the data put on the data bus.

After the chip select, address bus and data bus have been
verified statically, it may be necessary to execute the same
test program dynamically to assure that all chips in the system
are operating at system speed. At this point, it may be
necessary to include a WRITE operation (STA, STX, STY, etc.)
in the loop to provide a sync signal.

Analysis of the dynamic operation of the ROMs should involve
first looking at each address and data bus lines directly on the
processor chip. It is here that the address is being generated,
and it is here that the data must meet a speed specification. If
data is not valid at the proper time, the next step is to
determine where excessive delay has been introduced into the
data path from address output, through the ROM and back to
the processor data bus. Keep in mind that it is this entire path
which must operate at speed to assure proper processor operation.
In fact, if the delays are excessive, it may be necessary to slow
down the system clock rate to allow the program data to reach
the processor in time. An alternative solution to this problem
is the implementation of the RDY signal to hold the processor

149

for one cycle each time it fetches data or program from the
ROMs.

Although the problems discussed above may be encountered at
this point, it is much more likely that a wiring error will cause a
single address or data line to be excessively loaded so that it
operates slow or not at all. This problem can usually be detected
and fixed quite easily by looking at each component in the data
path.

B. RAMs:

Operation of the RAMs in a microprocessor system can be
checked in much the same manner as the ROMs. Execution of a
test loop program both statically and dynamically for each chip
in the system should be sufficient to verify proper operation of
the RAMs in the system. For each RAM, both a WRITE and a
READ operation should be included in the test loop. This will
allow checkout of data transfers in both directions.

During single cycle execution of the test loop, the processor will
stop only in the RAM read operations. However, this will allow
a static check of the chip select logic and the address and data
lines. Running the program dynamically will allow verification
that the data and address signals presented to the RAMs during
the WRITE operation are within specification for the RAM being
used in the system and that the total delays through the address,
RAM, and data bus path are within specifications for the
processor during the READ operations. As with the ROMs, the
most likely problem to be encountered at this point is wiring
errors which cause a specific device to operate improperly. A
careful check of each pin will allow detection of this type of
problem.

C. PlAs:

The peripheral interface devices (6520, 6530, etc.) can all be
checked out in the manner described above. However, since
these chips do many different operations, the test program must
be much more complex than that required for the ROM and RAM.

150

However, it can usually be limited to testing only those functions
which are used in the system.

A large part of the operation of the peripheral interface devices
can be verified by doing a WRITE followed by a READ for each
register on the chip. This will allow a complete checkout of the data
paths between the processor and the chips as well as a checkout of
all the chip select functions. However, a more complete analysis may
be required to verify that data is appearing properly on the output
pins of the peripheral chip and that data on the inputs is being
reflected properly back into the processor. This will involve
disconnecting the peripheral subsystem which the processor is
attempting to drive and manually putting data into the inputs. A
separate test can verify the validity of output data.

After the system hardware has been examined in the detail discussed
above, the designer will have developed confidence that his system can
operate properly once the system program is completely debugged.
Verification of the system program should proceed with a section-by-
section checkout as discussed above. Each subroutine, interrupt routine,
etc. should be examined separately. They can then be combined to form
the major peripheral operating routines, arithmetic routines, etc. that
make up the system. The final result should be a functioning program
which has been examined in all its details running on a system which is
fully operational.

151

APPENDIX A
SUMMARY OF SINGLE CYCLE EXECUTION

This section contains an outline of the data on both the address bus and the
data bus for each cycle of the various processor instructions. It tells the system
designer exactly what to expect while single cycling through a program.

Note that the processor will not stop in any cycle where R/W is a O (write
cycle). Instead, it will go right info the next read cycle and stop there. For this
reason, some instructions may appear to be shorter than indicated here.

All instructions begin with TO and the fetch of the OP CODE and continue

through the required number of cycles until the next TO and the fetch of the
next OP CODE.

While the basic terminology used in this appendix is discussed in the
Programming Manual, it has been defined below for ease of reference while
studying Single Cycle Execution.

OP CODE — The first byte of the instruction containing the operator and
mode of address.

OPERAND — The data on which the operation specified in the OP CODE is
performed.

BASE ADDRESS — The address in Indexed addressing modes which specifies
the location in memory to which indexing is referenced. The high order
of byte of the base address (ABO8 to AB15) is BAH (Base Address High)
and the low order byte of the base address (ABOO to ABO7) is BAL
(Base Address Low)

EFFECTIVE ADDRESS — The destination in memory in which data is to be
found. The effective address may be loaded directly as in the case of
Page Zero and Absolute Addressing or may be calculated as in
Indexing operations. The high order byte of the effective address
(ABO8 to AB15) is ADH and the low order byte of the effective address
(ABOO to ABO7) is ADL.

INDIRECT ADDRESS — The address found in the operand of instructions
utilizing (Indirect),Y which contains the low order byte of the base

address. IAH and AL represent the high and low order bytes.

JUMP ADDRESS — The value to be loaded into Program Counter as a result
of a Jump instruction.

A-1

Al. SINGLE BYTE INSTRUCTIONS

ASL DEX NOP TAX TYA
CLC DEY ROL TAY
CLD INX SEC TSX
Cl INY SED TXA
CLv LSR SEl TXS

These single byte instructions require two cycles to execute. During the
second cycle the address of the next instruction in program sequence will
be placed on the address bus. However, the OP CODE which appears on
the data bus during the second cycle will be ignored. This same instruction
will be fetched on the following cycle at which time it will be decoded
and executed. The ASL, ROL and LSR instructions apply to the accumulator
mode of address.

Tn Address Bus Data Bus R/W Comments
TO PC OP CODE 1 Fetch OP CODE
OP CODE

T PCH (Discarded) !
TO PC+1 OP CODE 1 Next Instruction
A.2. INTERNAL EXECUTION ON MEMORY DATA

ADC CMP EOR LDY

AND CPX LDA ORA

BIT CPY LDX SBC

The instructions listed above will execute by performing operations inside
the microprocessor using data fetched from the effective address. This
total operation requires three steps. The first step (one cycle) is the OP
CODE fetch. The second (zero to four cycles) is the calculation of an
effective address. The final step is the fetching of the data from the
effective address. Execution of the instruction takes place during the
fetching and decoding of the next instruction.

A-2

A. 2.1. Immediate Addressing (2 cycles)

Tn

TO
T1
TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 Data 1
PC+2 OP CODE 1

A. 2.2. Zero Page Addressing (3 Cycles)

Tn

TO
T1
T2
TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 ADL 1
00, ADL Data 1
PC+2 OP CODE 1

A. 2.3. Absolute Addressing (4 cycles)

Tn

TO
Tl

T2

T3
TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 ADL 1
PC+2 ADH 1
ADH, ADL Data 1
PC+3 OP CODE 1

A. 2.4. Absolute Addressing (4 cycles)

Tn

TO
T1

T2

T3

T4

5
TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 BAL 1
00, BAL Data 1
(Discarded)

00, BAL + X ADL 1
00, BAL + ADH 1
X+1

ADH, ADL Data 1
PC+2 OP CODE 1

A-3

Comments

Fetch OP CODE
Fetch Data
Next Instruction

Comments

Fetch OP CODE

Fetch Effective Address
Fetch Data

Next Instruction

Comments

Fetch OP CODE

Fetch low order Effective
Address byte

Fetch high order Effective
Address byte

Fetch Data

Next Instruction

Comments

Fetch OP CODE
Fetch Page Zero Base
Address

Fetch low order byte of
Effective Address

Fetch high order byte of
Effective Address

Fetch Data

Next Instruction

A. 2.5. Absolute, X or Absolute, Y Addressing (4 or 5 cycles)

In

TO
Tl

T2

T3

T4*

TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 BAL 1
PC+2 BAH 1
ADL: BAL+ Data* 1
Index register

ADH: BAH + C

ADL: BAL + Data 1
Index register

ADH: BAH + 1

PC+3 OP CODE 1

Comments

Fetch OP CODE
Fetch low order byte of Base
Address

Fetch high order byte of Base
Address

Fetch Data (no page-
crossing)

Carry is O or 1 as required
from previous add operation

Fetch Data from next page

Next Instruction

*If the page boundary is crossed in the indexing operation, the data fetched
in T3 is ignored. If page boundary is not crossed, the T4 cycle is bypassed.

A. 2.6. Zero Page, X or Zero Page, Y Addressing Modes (4 cycles)

Tn

TO
T1

T2

T3

TO

Address Bus Data Bus R/W
PC OP CODE 1
PC+1 BAL 1
00, BAL Data 1
(Discarded)

00, BAL + Data 1
Index register

PC+2 OP CODE 1

A-4

Comments

Fetch OP CODE
Fetch Page Zero Base
Address

Fetch Data (no page-
crossing)

Next Instruction

A. 2.7. |Indirect, Y Addressing Mode (5 or 6 cycles)

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

T1 PC+1 IAL 1 Fetch Page Zero Indirect
Address

T2 00, IAL BAL 1 Fetch low order byte of Base
Address

T3 00, IAL +1 BAH 1 Fetch high order byte of Base
Address

T4 ADL:BAL+Y Data*® 1 Fetch Data from same page

ADH: BAH + C

Carry is O or 1 as required
from previous add operation

T5* ADL: BAL+Y Data 1 Fetch Data from next page
ADH: BAH + 1
T0 PC+ 2 OP CODE 1 Next Instruction

*If page boundary is crossed in indexing operation, the data fetch in T4 is
ignored. If page boundary is not crossed, the T5 cycle is bypassed.

A. 3. Store Operations

STA

STX

STY

The specific steps taken in the Store Operations are very similar to those
taken in the previous group (Internal execution on memory data).
However, in the Store Operation, the fetch of data is replaced by a
WRITE (R/W = 0) cycle. No overlapping occurs and no shortening of
the instruction time occurs on indexing operations.

A. 3.1. Zero Page Addressing (3 cycles)

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

Tl PC+1 ADL 1 Fetch Zero Page Effective
Address

T2 00, ADL Data O Write internal register to
memory

TO PC+ 2 OP CODE 1 Next Instruction

A-5

A. 3.2. Absolute Addressing (4 cycles)

In
TO
Tl
T2
T3

TO

In
TO
T1
T2

T3

T4

T5

Address Bus Data Bus R/W Comments

PC OP CODE 1 Fetch OP CODE

PC + 1 ADL 1 Fetch low order byte of
Effective Address

PC + 2 ADH 1 Fetch high order byte of
Effective Address

ADH, ADL Data O Write internal register to
memory

PC+ 3 OP CODE 1 Next Instruction

A. 3.3. Indirect, X Addressing (6 cycles)

Address Bus Data Bus R/W Comments

PC OP CODE 1 Fetch OP CODE

PC +1 BAL 1 Fetch Page Zero Base Address

00, BAL Data 1

(Discarded)

00,BAL+ X ADL 1 Fetch low order byte of
Effective Address

00, BAL + ADH 1 Fetch high order byte of

X+ 1 Effective Address

ADH, ADL Data O Write internal register to
memory

PC + 2 OP CODE 1 Next Instruction

TO

A. 3.4. Absolute, X or Absolute, Y Addressing (5 cycles)

In
TO
T1
T2

T3

T4

TO

Address Bus Data Bus R/W Comments

PC OP CODE 1 Fetch OP CODE

PC+1 BAL 1 Fetch Low order byte of Base
Address

PC + 2 BAH 1 Fetch high order byte of Base
Address

ADL: BAL + Data 1

index register (Discarded)

ADH: BAH + C

ADH, ADL Data O Write internal register to
memory

PC+ 3 OP CODE 1 Next Instruction

A-6

A. 3.5.

A. 3.6.

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles)

Tn Address Bus Data Bus R/W Comments
TO PC OP CODE 1 Fetch OP CODE
Tl PC+1 BAL 1 Fetch Page Zero Base Address
T2 00, BAL Data 1
(Discarded)
T3 ADL: BAL + Data O Write internal register to
Index register memory
TO PC+ 2 OP CODE 1 Next Instruction

Indirect, Y Addressing Mode (6 cycles)

In Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

Tl PCH+1 IAL 1 Fetch Page Zero Indirect
Address

T2 00, IAL BAL 1 Fetch low order byte of Base
Address

T3 00, IAL + 1 BAH 1 Fetch high order byte of Base
Address

T4 ADL: BAL+ Y Data 1

(Discarded)
ADH: BAH

T5 ADH, ADL Data O Write Internal Register to
memory

TO PC+ 2 OP CODE 1 Next Instruction

READ — MODIFY — WRITE OPERATIONS

ASL LSR
DEC ROL
INC ROR
The Read — Modify — Write operations involve the loading of

operands from the operand address, modification of the operand and
the resulting modified data being stored in the original location.

Note: The ROR instruction will be available on MCS650X
microprocessors after June, 1976.

A-7

A. 4.1. Zero Page Addressing (5 cycles)

In
TO
Tl

T2
T3
T4

TO

In
TO
Tl
T2
T3
T4
T5

TO

A. 4.3. Zero

In
TO
T1
T2

T3

T4

T5

Address Bus Data Bus R/W Comments
PC OP CODE 1 Fetch OP CODE
PC + 1 ADL 1 Fetch Page Zero Effective
Address
00, ADL Data 1 Fetch Data
00, ADL Data 0
00, ADL Modified 0 Write modified Data back to
Data memory
PC + 2 OP CODE 1 Next Instruction
A. 4.2. Absolute Addressing (6 cycles)
Address Bus Data Bus R/W Comments
PC OP CODE 1 Fetch OP CODE
PC + 1 ADL 1 Fetch low order byte of
Effective Address
PC+2 ADH 1 Fetch high order byte of
Effective Address
ADH, ADL Data 1
ADH, ADL Data 0
ADH, ADL Modified 0 Write modified Data back into
Data memory
PC+ 3 OP CODE 1 Next Instruction
Page, X Addressing (6 cycles)
Address Bus Data Bus R/W Comments
PC OP CODE 1 Fetch OP CODE
PC +1 BAL 1 Fetch Page Zero Base Address
00, BAL Data 1
(Discarded)
ADL: BAL + X Data 1 Fetch Data
(without carry)
ADL: BAL + X Data 0
(without carry)
ADL: BAL + X Modified 0 Write modified Data back into
(without carry) Data memory
PC+ 2 OP CODE 1 Next Instruction

TO

A-8

A. 4.4. Absolute, X Addressing (7 cycles)

A. 5.

A. 5.1,

Fetch low order byte of Base

Fetch high order byte of Base

Write modified Data back into

Tn Address Bus Data Bus R/W Comments
T0 PC OP CODE 1 Fetch OP CODE
T1 PC+1 BAL 1
Address
T2 PC+ 2 BAH 1
Address
T3 ADL:BAL+ X Data 1
(Discarded)
ADH: BAH + C
T4 ADL: BAL + X Data 1 Fetch Data
ADH: BAH + C
T5 ADH, ADL Data 0
T6 ADH, ADL Modified 0
Data memory
T0 PC+ 3 OP CODE 1 Next Instruction

MISCELLANEQOUS OPERATIONS

BCC
BCS
BEQ
BMI
BNE
BPL

BRK
BVC
BVS
JMP
JSR

PHA

PHP
PLA
PLP
RTI

RTS

Push Operation — PHP, PHA (3 cycles)

Tn Address Bus Data Bus R/W Comments
TO PC OP CODE 1 Fetch OP CODE
Tl PC+1 OP CODE 1
(Discarded)
T2 Stack Pointer* Data O Write Internal Register into
Stack
TO PC+1 OP CODE 1 Next Instruction

*Subsequently referred to as "Stack Pir."

A-9

A 5.2,

A. 5.3.

Pull Operations — PLP, PLA (4 cycles)

In
TO

Tl

T2

T3
TO

Jump to Subroutine — JSR (6 cycles)

Address Bus Data Bus R/W Comments
PC OP CODE 1 Fetch OP CODE
PC + 1 OP CODE 1
(Discarded)
Stack Ptr. Data 1
(Discarded)
Stack Ptr. + 1 Data 1 Fetch Data from Stack
PC + 1 OP CODE 1 Next Instruction

In
TO

T1

T2

T3

T4

T5

TO

Address Bus Data Bus R/W Comments

PC OP CODE 1 Fetch OP CODE

PC + 1 ADL 1 Fetch low order byte
Subroutine Address

Stack Ptr. Data 1

(Discarded)

Stack Ptr. PCH O Push high order byte
program counter to Stack

Stack Ptr. -1 PCL O Push low order byte
program counter to Stack

PC + 2 ADH 1 Fetch high order byte
Subroutine Address

Subroutine OP CODE 1 Next Instruction

Address (ADH,
ADL)

of

of

of

of

A. 5.4,

A.5.5.

Break Operation — (Hardware Interrupt)-BRK (7 cycles)

TIn
TO

T1

T2
T3

T4
T5

T6

TO

Address Bus Data Bus R/W Comments

PC OP CODE 1 Fetch BRK OP CODE (or force
BRK)

PC +1 Data 1

(PC on (Discarded)

hardware

interrupt)

Stack Ptr. PCH O Push high order byte of
program counter to Stack

Stack Ptr. -1 PCL O Push low order byte of
program counter to Stack

Stack Ptr.-2 P O Push Status Register to Stack

FFFE ADL 1 Fetch low order byte of

(NMI-FFFA) interrupt vector

(RES-FFFC)

FFFF ADH 1 Fetch high order byte of

(NMI-FFFB) interrupt vector

(RES-FFFD)

Interrupt OP CODE 1 Next Instruction

Vector (ADH,
ADL)

Return from Interrupt — RTI (6 cycles)

In
TO

T1

T2

T3
T4
T5
TO

Pull PCL from Stack
Pull PCH from Stack

Address Bus Data Bus R/W Comments
PC OP CODE 1 Fetch OP CODE
PC+ 1 Data 1
(Discarded)
Stack Ptr. Data 1
(Discarded)
Stack Ptr. + 1 Data 1 Pull P from Stack
Stack Ptr. + 2 Data 1
Stack Ptr. + 3 Data 1
PCH, PCL OP CODE 1 Next Instruction

A.5.6. Jump Operation — JMP

Tn Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

T1 PC+1 ADL 1 Fetch low order byte of Jump
Address

T2 PC+ 2 ADH 1 Fetch high order byte of Jump
Address

TO ADH, ADL OP CODE 1 Next Instruction

In Address Bus Data Bus R/W Comments

TO PC OP CODE 1 Fetch OP CODE

T1 PC+1 IAL 1 Fetch low order byte of
Indirect Address

T2 PC+ 2 IAH 1 Fetch high order byte of
Indirect Address

T3 IAH, IAL ADL 1 Fetch low order byte of
Jump Address

T4 IAH, IAL + 1 ADH 1 Fetch high order byte of
Jump Address

TO ADH, ADL OP CODE 1 Next Instruction

A. 5.7. Return from Subroutine — RTS (6 cycles)

In Address Bus Data Bus R/W Comments
TO PC OP CODE 1 Fetch OP CODE
T1 PCH+1 Data 1
(Discarded)
T2 Stack Ptr. Data 1
(Discarded)
T3 Stack Ptr. + 1 PCL 1 Pull PCL from Stack
T4 Stack Ptr. + 2 PCH 1 Pull PCH from Stack
T5 PCH, PCL Data 1
(from Stack) (Discarded)
TO PCH,PCL+ 1 OP CODE 1 Next Instruction

A. 5.8. Branch Operation — BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS (2, 3, or

4 cycles)
TIn Address Bus Data Bus R/W Comments
T0 PC OP CODE 1 Fetch OP CODE
T1 PC+1 Offset 1 Fetch Branch Offset
T2* PC +2 + offset OP CODE 1 Offset Added to Program
(w/o carry) Counter

T3**PC + 2 + offset OP CODE 1 Carry Added
(with carry)

*Skip if branch not taken

**Skip if branch not taken; skip if branch operation doesn't cross page boundary.

