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PREFACE 

 

 

The MOS Technology, Inc. MCS6500 Microcomputer System offering 
combines the best features of second generation families into a product 
line that is both a price and performance leader. A growing array of 
products and a unique microprocessor family provide the customer with 
answers to the complex design problems confronting today's 
programmers and designers. 

Integrated circuit fabrication techniques have moved microprocessors to 
the forefront of complex, sophisticated components. The MCS6500 family 
benefits from an advanced but proven process technology; N-Channel, 
Silicon Gate, and Depletion Loads are the key elements providing the 
high performance characteristics obtainable in the single supply 5-volt 
system usage of the MCS6500 family. 

The N-Channel, Silicon Gate technology is enhanced by use of Depletion 
Loads which provides greater speed, lower power and smaller chip size 
than previous processing approaches. Ion Implementation techniques are 
basic elements in providing control and stability of all processing 
parameters necessary to achieve the electrical characteristics of the 
MCS6500 product line. These characteristics provide a 
price/performance combination which establishes the MCS6500 family 
as the product offering best meeting the economic and technical demands 
of today's system designs. 

A word of explanation is in order regarding the MCS6500 product line, 
since the concept of "Microprocessor Family" is indeed unique to the 
industry. It is helpful to understand the basic product structure of the 
MCS6500 family. 

The MCS650X Series represents the Microprocessor Family. Within this 
family will exist a series of 8-bit devices offering a wide range of options 
and capabilities for the customer. For the single-application customer, a varied 
selection of devices is at his disposal in choosing the one that best meets his 
specific needs. The "Microprocessor Family" concept has an even greater impact  



 
iii 

to the user who has a variety of applications, each of which can best be 
served by a specific member of the family. It is important to this user that 
all of the different microprocessors he selects maintain compatibility — 
both hardware (from the standpoint of bus and electrical specifications) 
and software. The MCS650X product line is the first microprocessor 
family to achieve such a level of compatibility because it was indeed 
conceptualized as a totally software and hardware compatible family of 
microprocessors offering a range of performance options from which the 
designer can select. The MCS6501 and MCS6502 are the first two 40-
pin members of the MCS650X family, each offering 65K bytes of 
addressable memory. The MCS6503, MCS6504 and MCS6505 are the 
first 28-pin versions with various options of addressing capability and 
control functions from which to choose. 

 The MCS652X Series represents Peripheral Input/Output devices, the 
first being the MCS6520 which is a direct replacement for the Motorola 
MC6820 Peripheral Interface Adapter (PIA). Subsequent members of this 
series will include devices with expanded I/O capabilities. 

The MCS653X Series represents combinational devices — those 
consisting of various tradeoffs in RAM, ROM, I/O, and Timing. The first of 
these is the MCS6530 which contains 1K bytes of ROM, 64 bytes of RAM, 
an Interval Timer and 16 I/O lines. Subsequent products in this series will 
provide the customer with different combinations and new 
implementations of I/O, Timing and Memory. 

The MCS654X Series represents Read Only Memories specifically 
tailored to meet the needs of large program storage required in many 
of the applications of the MCS6500 family of products. The first of these 
will be a 16K (2K × 8) ROM, the MCS6540. 

All of the MCS6500 product lines outlined utilize the same fabrication 
techniques and meet identical electrical specifications. With this family of 
compatible products the designer of today has at his disposal the 
elements necessary to develop a system configured to meet the most 
demanding tasks. 

Complementing the MCS6500 family is a selection of Random Access 
Memories totally compatible with the microcomputer family. The first of 
these will be the MCS6102, a 2102 equivalent, and the MCS6111, a 
2111 equivalent. 

To allow for minimum I/O cost and maximum user flexibility, all of the 
MCS6500 products are compatible with the M6800 bus structure. 
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Chapter 1 of this manual introduces the reader to the MCS6500 
Microcomputer System. It includes an introduction to terminology, an 
explanation of system components of a general microcomputer system, 
and then discusses the components of the MCS6500 Product Family. 

Chapter 2 is applications-oriented, with a discussion of system 
configuration, the I/O port, handshaking and specific examples on 
interrupt prioritizing, interfacing with peripherals, direct memory 
addressing techniques, and control of memories in the system. 

Chapter 3 is directed at the important task of bringing up a system. It 
takes the reader through a step-by-step procedure in analyzing, 
statically and dynamically, the basic elements of the system to assist the 
user in a smooth transition from a conceptual system to an operational 
one. 

 

  



 
v 

 

 

TABLE OF CONTENTS 

 
 
 
 

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM ........................................ 1 

1.0 Designing with Microcomputer Systems ................................................................ 3 
 
1.1 Introduction to Microcomputer Systems ................................................................. 4 
 
1.1.1 Organization of a Microcomputer System ....................................................... 4 
1.1.2 Basic Operation ...................................................................................................... 4 
1.1.3 Addressing Terms and Concepts ......................................................................... 4 
1.1.3.1 Bit ........................................................................................................................... 6 
1.1.3.2 Address Space .................................................................................................... 6 
1.1.3.3 The Address Page .............................................................................................. 6 
1.1.4 System Components ............................................................................................... 8 
1.1.4.1 Clock Generator ................................................................................................. 8 
1.1.4.2 Program Memory ............................................................................................... 8 
1.1.4.3 Data Memory ...................................................................................................... 9 
1.1.4.4 Input/Output Devices ............................................................................................ 10 
1.1.4.5 The Microprocessor ............................................................................................... 10 
 
1.2. Introduction to the MCS650X Microprocessor Family ..................................... 12 
 
1.2.1 The MCS6501 ....................................................................................................... 12 
1.2.2 The MCS6502 ....................................................................................................... 14 
1.2.3 The MCS6503, MCS6504 and MCS6505 ..................................................... 14 
 
1.3 MCS6500 System Concepts................................................................................... 15 
 
1.3.1 Bus Structure .......................................................................................................... 15 
1.3.2 Processor Interrupts .............................................................................................. 16 
1.3.2.1 Applications for Interrupts ..................................................................................... 20 
1.3.2.2 Interrupt Prioritizing ............................................................................................... 22 
1.3.2.3 System Interconnect for Interrupts ......................................................................... 22 
1.3.2.4 Interrupt Servicing ............................................................................................ 23 
1.3.2.5 Interrupt Request (IRQ) .................................................................................... 25 
1.3.2.6 Non-Maskable Interrupt (NMI) ...................................................................... 27 
1.3.3 System Reset ......................................................................................................... 27 
 



 
vi 

1.4 The Microprocessors ................................................................................................ 30 
 
1.4.1 The MCS6501 ....................................................................................................... 30 
1.4.1.1 Introduction ......................................................................................................... 30 
1.4.1.2 The MCS6501 Pinouts ........................................................................................ 32 
1.4.1.2.1 Vcc, Vss — Supply Lines ................................................................................. 32 
1.4.1.2.2 AB00-AB15 — Address Bus .......................................................................... 32 
1.4.1.2.3 DB0-DB7 — Data Bus .................................................................................... 34 
1.4.1.2.4 R/W — Read/Write ................................................................................... 36 
1.4.1.2.5 DBE — Data Bus Enable .............................................................................. 36 
1.4.1.2.6 VMA — Valid Memory Address ............................................................... 36 
1.4.1.2.7 BA — Bus Available ..................................................................................... 37 
1.4.1.2.8 RDY — Ready ............................................................................................... 37 
1.4.1.2.9 NMI — Non-Maskable Interrupt ............................................................... 38 
1.4.1.2.10 IRQ — Interrupt Request .......................................................................... 38 
1.4.1.2.11 RES — Reset ................................................................................................ 40 
1.4.2 The MCS6502 ....................................................................................................... 41 
1.4.2.1 Product Characteristics .................................................................................... 41 
1.4.2.2 Device Timing — Requirements and Generation ...................................... 41 
1.4.2.3 SYNC Signal ...................................................................................................... 44 
1.4.2.4 S.O. — Set Overflow ...................................................................................... 44 
 
1.5 Peripheral Interface Device — MCS6520 ......................................................... 50 
 
1.5.1 Introduction ............................................................................................................ 50 
1.5.2 Organization of the MCS6520 ......................................................................... 51 
1.5.2.1 Data Input Register .......................................................................................... 54 
1.5.2.2 Control Registers (CRA and CRB) .................................................................. 54 
1.5.2.3 Data Direction Registers (DDRA, DDRB) ....................................................... 55 
1.5.2.4 Peripheral Output Registers (ORA, ORB) .................................................... 55 
1.5.2.5 Interrupt Status Control ................................................................................... 55 
1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB) ............ 55 
1.5.3 Interface Between MCS6520 and the MCS650X Family of  Microprocessors ... 56 
1.5.3.1 Data Bus (D0-D7) ............................................................................................. 56 
1.5.3.2 Enable (E) ........................................................................................................... 56 
1.5.3.3 Read/Write (R/W) .......................................................................................... 56 
1.5.3.4 Chip Select Lines (CS1, CS2, CS3) ................................................................ 56 
1.5.3.5 Register Select Lines (RS0), (RS1) ...................................................................... 58 
1.5.3.5.1 Reading the Peripheral A I/O Port............................................................... 59 
1.5.3.5.2 Reading the Peripheral B I/O Port ............................................................... 59 
1.5.3.6 Reset (RES) ........................................................................................................... 63 
1.5.3.7 Interrupt Request Line (IRQA, IRQB) ................................................................. 63 
1.5.3.7.1 Control of IRQA ............................................................................................... 63 
1.5.3.7.2 Control of IRQB ............................................................................................. 64 
 



 
vii 

1.5.4 Interface Between MCS6520 and Peripheral Devices ................................ 64 
1.5.4.1 Peripheral I/O Ports ........................................................................................ 64 
1.5.4.1.1 Peripheral A I/O Port (PA0-PA7) ............................................................. 65 
1.5.4.1.2 Peripheral B I/O Port (PB0-PB7) ............................................................... 65 
1.5.4.2 Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2) ............ 66 
1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CA1, CA2) ......... 66 
1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2) ..... 67 
1.5.5 Summary of MCS6520 Operation ................................................................... 67 
1.5.5.1 Control Register Operation ............................................................................ 67 
1.5.5.2 MCS6520 Operation in MC6500 Systems ................................................. 70 
 
1.6 Peripheral Interface/Memory Device — MCS6530 ........................................ 71 
 
1.6.1 Introduction ............................................................................................................ 71 
1.6.2 Pinout Description ................................................................................................. 71 
1.6.2.1 Reset (RES) .......................................................................................................... 71 
1.6.2.2 Input Clock .......................................................................................................... 73 
1.6.2.3 Read/Write (R/W) ............................................................................................ 73 
1.6.2.4 Interrupt Request (IRQ) ....................................................................................... 73 
1.6.2.5 Data Bus (D0-D7) ................................................................................................ 73 
1.6.2.6 Peripheral Data Ports ......................................................................................... 73 
1.6.2.7 Address Lines (A0-A9) ..................................................................................... 74 
1.6.3 Internal Organization .......................................................................................... 74 
1.6.3.1 ROM — 1K Byte (8K Bits) .............................................................................. 74 
1.6.3.2 RAM — 64 Bytes (512 Bits) .............................................................................. 76 
1.6.3.3 Internal Peripheral Registers ............................................................................. 76 
1.6.3.4 Interval Timer ....................................................................................................... 76 
1.6.4 Addressing ............................................................................................................. 78 
1.6.4.1 One-Chip Addressing ...................................................................................... 80 
1.6.4.2 Seven-Chip Addressing ................................................................................... 80 
1.6.4.3 I/O Register — Timer Addressing ................................................................ 80 

 

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM ............................ 84 

 
2.1 The System Configuration Task ............................................................................. 84 

 

2.2 Input/Output Techniques ........................................................................................ 85 
 
2.2.1 The General Purpose Input/Output (I/O) Port .............................................. 85 
2.2.2 The Special Purpose Peripheral Interface Device ......................................... 86 
2.2.3 Configuring the General Purpose I/O Port .................................................... 87 
2.2.3.1 Assignment of Outputs ..................................................................................... 88 
2.2.3.2 Assignment of Inputs ......................................................................................... 88 
2.2.4 Power-On Considerations................................................................................... 90 
 



 
viii 

2.2.5 Handshaking .......................................................................................................... 94 
2.2.5.1 Handshaking on Data Transfers from the Processor ................................. 94 
2.2.5.2 Handshaking on Data Transfers into the Processor ................................... 95 

 
2.3 Configuring the Interface Between the Microprocessor and the Support Chips. ..... 99 
 
2.3.1 Assignment of Addresses in the MCS6500 System ....................................... 99 
2.3.1.1 ROM Address Assignment ................................................................................ 102 
2.3.1.2 RAM Address Assignment ................................................................................. 102 
2.3.2 Additional Address Assignment Techniques ............................................ 104 
2.3.3 Interrupts ............................................................................................................ 104 
2.3.3.1 Interrupt Prioritizing ...................................................................................... 106 
2.3.3.2 Example 1: Selecting the Interrupt Vector ............................................... 106 
2.3.3.3 Example 2: Using the Processor Software Power .................................. 108 
2.3.4 The Application of RDY to Controlling the Memory Interface ....................... 108 
2.3.4.1 Interfacing Slow PROMs ................................................................................. 108 
2.3.4.2 Direct Memory Address (DMA) Techniques .............................................. 112 
2.3.4.3 Control of Dynamic RAMs in the MCS6500 System............................... 113 
2.3.5 Hold-Time Control — MCS6501 ................................................................... 117 

 
2.4 Additional System Considerations ..................................................................... 119 

 
2.4.1 Peripheral Interface Devices .......................................................................... 119 
2.4.2 RAM ...................................................................................................................... 119 
2.4.3 ROM ..................................................................................................................... 120 

 
2.5 Evaluating System Performance ........................................................................ 121 

 

CHAPTER 3 BRINGING UP THE MCS6500 ........................................................... 123 

 

3.0 Introduction to Microcomputer Testing.............................................................. 123 

 
3.1 Static Testing ............................................................................................................ 124 

 
3.1.1 Introduction ........................................................................................................... 124 
3.1.2 Single Cycle Execution ........................................................................................ 124 
3.1.3 Single Instruction Execution .............................................................................. 127 

 
3.2 Dynamic Testing ...................................................................................................... 130 

 
3.2.1 Introduction ........................................................................................................... 130 
3.2.2 Externally Induced Loops ................................................................................... 130 
3.2.3 Software Loops .................................................................................................. 132 

 



 
ix 

3.3 System Diagnosis Using Hardware Programmer Aids .................................. 133 

 
3.3.1 KIM — Keyboard Input Monitor .................................................................... 135 
3.3.2 TIM — Teletype Input Monitor ....................................................................... 136 
3.3.3 MDT — Microcomputer Development Terminal ......................................... 138 

 
3.4 Microprocessor Start-Up Procedure ................................................................. 139 

 
3.4.1 Introduction ......................................................................................................... 139 
3.4.2 System Power — Step 1 .................................................................................... 139 
3.4.3 Basic System Timing — Step 2 ....................................................................... 140 
3.4.4 System Reset — Step 3 ....................................................................................... 140 
3.4.4.1 Static Analysis of System Details ............................................................... 144 
3.4.4.2 Dynamic Analysis of System Details .......................................................... 145 
3.4.4.2.1 Address Bus Verification ........................................................................... 145 
3.4.4.2.2 Data Bus Verification ................................................................................ 146 
3.4.5 Detailed Component Check ............................................................................ 148 

 

APPENDIX A ................................................................................................................. A-1 

 
  



 
x 

 

 

LIST OF FIGURES 

 

 

 

 

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM 

 
1.1    Organization of Microcomputer System. .......................................................... 5 
1.2    Address Bus and Relation to Memory Field. .................................................... 7 
1.3    Portion of Read Only Memory Matrix. ............................................................. 9 
1.4    Pinout Comparison: MOS Technology MCS6501, Motorola MC6800 ...... 9 
1.5    Clock and Read/Write Timing Table (1 MHz Operation) ......................... 17 
1.6    Two-Phase Clock Timing. .................................................................................... 18 
1.7    Timing for Reading Data from Memory of Peripherals. ............................. 18 
1.8    Timing for Writing Data to Memory of Peripherals. ................................... 19 
1.9    Interrupt Wire OR'd Hardware Configuration from Peripheral Interface 

Devices to Microprocessor ................................................................................ 24 
1.10   Sequence to Service IRQ................................................................................... 26 
1.11   MCS650X Internal Architecture ....................................................................... 29 
1.12   MCS6501 Pinout Designations ........................................................................ 33 
1.13   MCS650X System Timing Diagram ................................................................ 35 
1.14   Examples of Interrupt Recognition by MCS650X. ....................................... 39 
1.15   MCS6502 Pinout Designation .......................................................................... 42 
1.16   MCS6502 Time Base Generation — Crystal Controlled. ......................... 43 
1.16a MCS6502 Parallel Mode Crystal Controlled Oscillator ............................ 43 
1.16b MCS6502 Series Mode Crystal Controlled Oscillator ............................... 43 
1.17   MCS6502 Time Base Generator — RC Network ....................................... 45 
1.18   MCS6502 SYNC Signal .................................................................................... 45 
1.19   Functional Features of MCS6503, MCS6504, MCS6505 ......................... 46 
1.20   MCS6503, MCS6504, MCS6505 Pinout Designations .............................. 48 
1.21   MCS6503, MCS6504, MCS6505 Time Base Generation Crystal 

Controlled ............................................................................................................ 49 
1.22   MCS6503, MCS6504, MCS6505 Time Base Generation RC Network....... 49 
1.23   Basic MCS6520 Interface Diagram ............................................................... 50 
1.24   MCS6520 Pinout Designations Peripheral Interface Adaptor. ................ 52 
1.25   MCS6520 Internal Architecture ....................................................................... 53 
1.26a Microprocessor Interface Timing — Read ..................................................... 57 
1.26b Microprocessor Interface Timing — Write.................................................... 57 
1.27a Peripheral A Interface Timing .......................................................................... 60 
1.27b Peripheral B Interface Timing .......................................................................... 61 
1.28a Peripheral I/O Port A Buffer. .......................................................................... 62 
1.28b Peripheral I/O Port B Buffer ............................................................................ 62 
1.29   Control Register Bit Designations .................................................................... 67 



 
xi 

 
 
 
 
 
1.30   Control of Interrupt Inputs CA1, CB1.............................................................. 68 
1.31a Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = "0"). .............................. 68 
1.31b Control of CA2 Output Modes  ....................................................................... 69 
1.31c  Control of CB2 Output Modes ........................................................................ 69 
1.32   MCS6530 Pinout Designation. ......................................................................... 72 
1.33   MCS6530 Internal Architecture ....................................................................... 72 
1.34   Basic Elements of Interval Timer ...................................................................... 77 
1.35   Example of Interrupt Generated by Interval Timer .................................... 79 
1.36   MCS6530 One-Chip Address Encoding Diagram ....................................... 81 
1.37   MCS6530 Seven-Chip Addressing Scheme. ................................................. 82 
1.38   Addressing Decode for I/O Register and Timer. ........................................ 83 

 

 
CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM 
 
2.1     Control of Low Order Bit of MCS6520 Output Register ........................... 89 
2.2     MCS6520 Control of Transistor Driven Solenoids. ...................................... 91 
2.3a   MCS6520 Control of PNP Transistor Driving Solenoid Coil ...................... 93 
2.3b   MCS6520 Controlling Both Power and Drivers of Solenoid Cell............. 93 
2.4     MCS6520 Driving TTL Buffers ......................................................................... 93 
2.5     MCS6520 Controlling Solenoids with Enable Signal and TTL Interface ....... 94 
2.6     Write Handshake Sequence. ........................................................................... 97 
2.7     Read Handshake Sequence ............................................................................. 98 
2.8     Organization of Microcomputer System ..................................................... 100 
2.9     Example of "AND" Function Using High Order Address Lines ............... 101 
2.10   Typical Address Assignment .......................................................................... 103 
2.11   Page Zero Chip-Select Addressing Scheme .............................................. 105 
2.12   Selecting the Interrupt Vector ....................................................................... 107 
2.13   Using MCS6520 for Jump Indirect Interrupt Routines. ............................. 109 
2.14a Priority Encoder Connected to Low Order Bits of MCS6520 ................ 110 
2.14b Priority Encoder to Peripheral Interface Scheme...................................... 111 
2.15   Software Program to Implement Interrupt from above Hardware 

Configuration ................................................................................................... 111 
2.16   Interfacing Scheme for Slow PROMs ........................................................... 114 
2.17   Logic Used to Generate Bus Available Signal for DMA Applications. ...... 114 
2.18   Control Logic for Refresh Signal for Dynamic RAMs ............................... 116 
2.19   Timing Analysis of Data Hold Time .............................................................. 118 

 

 

 

 



 
xii 

 

 

 

 
CHAPTER 3 BRINGING UP THE MCS6500 

 
3.1    Suggested Static Test Control Logic. ............................................................ 125 
3.2    Single Cycle Timing .......................................................................................... 126 
3.3    Microprocessor Single Cycle Data Trap ...................................................... 128 
3.4    Single Instruction Execution ............................................................................. 129 
3.5    Suggested Configuration for Dynamic Reset Testing. ............................... 131 
3.6    MCS6501 Clock Timing Signals ..................................................................... 141 
3.6a  Improper Clocks ................................................................................................ 141 
3.6b  Proper Clocks. .................................................................................................... 141 
3.7    Address Lines in MCS650X Systems ............................................................. 142 
3.7a  Proper Address Lines ....................................................................................... 142 
3.7b  Excess Address Line Loading .......................................................................... 142 
3.8    The Data Bus in MCS650X Systems .............................................................. 143 
 
 

 



 

1 
 

CHAPTER 1 
 
 

THE MCS6500 MICROCOMPUTER SYSTEM 
 
 

 
The past several years have seen the development of an exciting new 
concept in electrical design. Conventional system design is rapidly being 
revolutionized by the large-scale, single-chip programmable 
microprocessor. The microcomputer started out as a relatively simple, 
difficult-to-use programmable device capable of handling simple control 
or computational problems. However, it has since matured into a 
powerful, inexpensive, easy-to-use device capable of controlling all but 
the most complex of systems.  

Three primary attributes of microprocessor-based systems are bringing 
about this revolution. They are: 

1. Microprocessors allow a significant reduction in overall systems 
cost for products currently in production. Redesigning their products 
around the microprocessor is permitting many manufacturers to 
develop or maintain a price advantage over competitors. 

2. The reduction in cost of microcomputer systems is opening up vast 
new markets for microprocessors. A great number of systems which 
were simply impossible or were at best impractical, are being 
designed and marketed today using the modern, low-cost 
microprocessors. 

3. At the same time the price of microprocessors is dropping, the 
capability is rapidly expanding. This also allows them to be 
designed into more systems than ever before. 

Anyone contemplating a new design or trying to reduce cost in an existing 
design must ask himself if a microprocessor will solve his problem. 

The success of the microprocessor is based on the fact that it allows the 
design engineer and programmer to apply their expertise in solving a 
multitude of design problems using cost effective ICs. A small number of 
large integrated circuits can be configured to solve design problems from 
the simplest to the most complex. 
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If the same integrated circuits are used to solve a multitude of unique 
designs, the first question one must ask is, "What makes them unique?" 
The answer is: Programming. Although many different designs may share 
common hardware, each has its own unique program. This brings us to 
another very important characteristic of microcomputers. The integrated 
circuit which makes each system unique is the "Read-Only Memory" 
(ROM) which stores the system program. It is relatively easy for the 
integrated circuit manufacturer to establish the particular pattern which 
uniquely defines the data in a ROM. As a result, the typical charge for 
"designing" a ROM is generally less than 10% of the cost of designing a 
totally custom logic chip. Further, the user benefits from high volume 
standard product which is still unique for his own application due to the 
"customization" of one element of his system. 
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1.0 DESIGNING WITH MICROCOMPUTER SYSTEMS 

 

It will probably surprise many designers who are approaching the subject 
of microcomputer design for the first time when they discover that 
designing a system around a microprocessor is much the same as 
designing around conventional logic. The total approach is the same; the 
process differs only in the implementation of each step. 
 
A brief examination of the system design process will help to put 
microcomputer design in perspective and will also assist in clarifying the 
purpose of this manual. One can expect to perform the following steps in 
designing a system: 
 

1. Define the requirements of the system. What functions should it 
perform? 

 
2. Define basic system components. 
 
3. Complete design details. 
 
4. Build and test prototypes. 
 
5. Finalize design and begin production. 

  
Step 1 is true for any system and, in general, for any product. Step 2 is 
the first point of departure for microprocessor based designs. It is at this 
time that the designer must consider the possibility of using a 
microprocessor in his system. For the very cost-sensitive application he 
must look very carefully at total systems cost. Can a microprocessor do 
the job within the price constraints imposed? At the other end of the design 
spectrum, the system designer must evaluate the capability of 
microprocessors to assure himself that the available devices can in fact 
perform the required function. Will a microprocessor be fast enough to 
run the system? Will it take more than one processor? 
 
The purpose of this manual is to teach the designer how to effectively 
configure a microprocessor-based system and to evaluate the 
performance of the system. After this step, the design will be completed 
by development of the system program. Implementation of the system 
program is discussed in the Programming Manual. 
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1.1 INTRODUCTION TO MICROCOMPUTER SYSTEMS 
 

1.1.1 Organization of a Microcomputer System 
 
Figure 1.1 illustrates the basic organization of a microcomputer system. It is 
important that the designer understand the operation of each component as well 
as the operation of each data path in the system. Each of these is discussed 
separately below. In addition, the following discussion describes the operation of 
the overall system and the use of the various signal paths. 
 

1.1.2 Basic Operation 

 
The microcomputer is a system which can be characterized as very simple in its 
detail and very complex in its overall operation. It carries out rather complex tasks 
by performing a large number of simple operations. Control of the system is 
primarily the responsibility of the processor. By putting out addresses to program 
memory, it controls the sequence of operations performed and by interpreting and 
executing the instructions which it receives from the program memory, it controls the 
actual operations carried out by the system. The processor is by far the most 
complex device in the system. For this reason, it is important to overall system cost 
that this part stay the same for many different applications. In this way, the 
relatively high development cost can be shared by thousands of users. In addition, 
those thousands of users can all benefit from the economics of large-scale 
production. 
 
The processor causes the system to perform the desired operations by reading the 
first instruction in the program, and performing the very simple task dictated by 
the specific pattern of bits in this instruction (referred to as "executing" that 
instruction). It then goes on to the next instruction in the program and executes it. 
This simple operation of fetching an instruction and executing it is performed over 
and over, each time on the next instruction in sequence. In this way the program 
instructs the processor to bring about the desired system operation. 
 

1.1.3 Addressing Terms and Concepts 

 
Before entering into a detailed discussion of the system operation, it would be 
useful to define a few terms and to introduce a few concepts concerning 
addressing. This should assist in an understanding of the detailed discussions which 
follow. 
 



 

5 
 

 
 
 
 

 
 
 

 

Organization of Microcomputer System 
FIGURE 1.1 
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1.1.3.1 Bit 
 
The term "Bit" is a general term referring to anything that can be assigned 
to binary value, i.e., anything that can be given a value of 0 or 1. Thus, 
an eight-bit data bus is a set of 8 lines which can be assigned a value of 
logic 0 or logic 1. On these lines, the logic values are represented by two 
different voltages or currents. Similarly, a 16-bit binary display can be 
built with 16 individual lamps. The logic 1 is represented by the lamp 
being on. 
 
In this text, reference is made to an 8-bit data bus, a 16-bit address bus, 
4 bits of data, 8-bit registers, etc. In all cases, definition of a bit remains 
the same. 
 

1.1.3.2 Address Space 
 
The concept of an address space is very useful in understanding 
microcomputer systems. The term "address space" refers to the total set 
of addresses which the microprocessor can generate. For example, if a 
processor had only 4 address lines, it could generate the addresses 0 – 
15 (binary 0000 to binary 1111). This would not be adequate for any 
microcomputer operation and, consequently, the typical processor has 
between 12 and 16 address lines. Since each line can assume a value of 
0 or 1, these devices can usually address from 4,096 to 65,536 separate 
addresses. Figure 1.2 contains a pictorial representation of the address 
space available in a typical 8-bit microcomputer with sixteen address 
lines. In addition to the general address space, this figure introduces the 
PAGE concept discussed below. 
 

1.1.3.3 The Address Page 
 
The concept of a PAGE in memory is very important in 8-bit microcomputer 
systems. The internal organization of an 8-bit processor is around 8-bit registers, 
8-bit parallel data paths, etc. Most arithmetic operations, logic operations, etc. 
take place on 8 bits of data at a time. Likewise, the 16-bit counter which 
determines which instruction is being executed is actually divided into two 8-bit 
busses. One contains bits 0 – 7 (low order address bits) and the other contains 
bits 8 to 15 (high order address bits). With this in mind, one can think of the 
address space shown in Figure 1.2 as consisting of 256 blocks, each consisting of 
256 specific address locations. Each of these blocks is referred to as a "PAGE" 
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of memory. The high order 8 bits of the address (ADH) therefore indicates 
in which page the address is located, and the low order 8 bits (ADL) 
indicates a specific address on that page. 
 
The first page in memory (ADH = 00) is referred to as page zero. The 
next higher order page (ADH = 01) is referred to as page 1, etc. 
 

1.1.4 System Components 
 
The block diagram in Figure 1.1 shows the basic components which 
comprise all microcomputer systems. Each of these blocks may consist of 
one or more integrated circuits and, in fact, the functions may be 
combined into single chips. However, the basic operation of each remains 
the same. 
 

1.1.4.1 Clock Generator 
 
The clock generator produces a continuous waveform which is normally 
used to control all signal transitions within the system. It acts as the "heart" 
of the system. In the typical microcomputer system the address bus will 
change during one half of the clock cycle and the data will be transferred 
during the second half. In addition to interpreting the address, data and 
control lines, the processor and support chips must also examine the 
system clock to know when to put out data or when to latch in data 
generated by another device. 
 

1.1.4.2 Program Memory 

 
The program memory stores the sequence of instructions which comprises 
the system program. Like any memory, this unit puts a pattern of 1's and 
0's on the data bus in response to the address on the address bus input. 
Each unique address selects a set of 8 binary bits and places this data on 
the data bus. Note that it does not matter where the address is generated 
or where the data is used; the memory simply obeys the rule that, given an 
address, it will put the corresponding 8 bits of data on the data bus. 
 
A unique characteristic of most microprocessor-based systems is that the 
program is usually stored in "READ-ONLY" memories. The data is stored in 
a fixed pattern of bits in the memory. Figure 1.3 shows a section of a 
semiconductor READ-ONLY Memory (ROM). 
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Portion of Read Only Memory Matrix 
FIGURE 1.3 

 

Since the data is stored in the physical configuration of the device, the 
data will not be lost when power is disconnected from the chip. In 
addition, it is only necessary to insert the device into its socket to provide 
the system program. The term "Read-Only Memory" refers to the fact 
that, in system operation, it is impossible for the processor to cause data 
to be stored in the device. The processor can only "READ" the data stored 
in the device during the manufacturing process. "READING" a memory 
involves the simple process of supplying an address to the device to 
obtain the corresponding 8 bits of data on the data bus. 
 
1.1.4.3 Data Memory 

 
For temporary storage of input data, the results of arithmetic 
operations, etc., the microcomputer uses a Read/Write Memory, 
commonly referred to as a RAM (Random Access Memory). The 
processor can store data in the RAM (called "WRITING" the RAM), 
or it can read back the data it has stored. As in the ROM, each 
address corresponds to eight memory cells. However, in a RAM 
the data must be placed into the memory by the processor and is 
stored in cross-coupled latches. Turning off the power to the chip 
will cause the loss of all data stored there. The data is said to be 
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"volatile." Data in a ROM is not lost when power is disconnected from the device; 
the data is therefore referred to as "non-volatile." 
 
"WRITING" data into a RAM takes place when the Write-Enable signal goes to 
the write state. At this time the data on the data bus will be stored into the eight 
memory cells corresponding to the address on the address bus. The processor 
can READ this same data by supplying the proper address and keeping the 
Write-Enable line in the Read state. 
 

1.1.4.4 Input/Output Devices 
 
The Input/Output Devices are the circuits which interface the printer, 
keyboard, displays, etc. to the processor. These allow the processor to read 
data from the keyboard, to test the state of sensors and switches, and to 
display or to print the results of internal operations. 
 
No matter where data is generated, it must be in the form of 1's and 0's 
before the processor can work with it. Likewise, actions to be initiated by 
the processor must be triggered by 1's and 0's transferred by the processor 
to a set of output lines. 
 
The transfer of data from the processor to an output device is usually 
accomplished by "WRITING" the data out in much the same manner as the 
processor writes data into RAM. Each set of 8 input or output lines (referred 
to as "PORT") is given an address and the processor simply writes data to 
that address. For each "1" written out to the peripheral port an output is 
set high and for each "0," the corresponding output is set low. 
 
Although the basic concept of peripheral control is simple, the actual 
implementation of these interfaces can involve many sophisticated 
techniques designed to allow the processor to maximize its ability to control 
peripherals and perform internal operations concurrently. These techniques 
are discussed in detail in Chapter 2 of this manual. 
 

1.1.4.5 The Microprocessor 
 
At first glance it may seem strange to discuss the support chips in the 
microprocessor-based system before mentioning the processor. 
However, this approach is necessitated by the fact that most of the 
inputs and outputs on the processor are aimed at properly controlling 
the support chips and peripheral devices discussed above. 
 
The address bus, the bi-directional data bus and the Write-Enable 
line allow the processor to exercise direct control over the rest of the 
system. The address bus puts out addresses to control the source or 
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destination of data transfers. These addresses are derived from various 
sources within the processor. During the fetch of instructions from program 
memory, the addresses are usually derived from a counter which controls 
execution of sequential instructions. Addresses for data transfers between 
the processor and RAM are usually derived directly from the program or 
are calculated from the data in the program and data in internal 
registers. 

The bi-directional data bus serves as a path for transferring data into 
and out of the processors. The direction of the data transfer is determined 
by the Write-Enable line. 

Another special function found in modern microcomputer systems is the 
interrupt. This function allows the peripheral devices to directly affect the 
operation of the processor. When the interrupt signal is generated, the 
processor usually completes its current instruction and then, under 
program control, will respond to the interrupt. The importance of this 
function is that it allows the processor to execute the system program 
without requiring the system program to monitor the status of the 
peripheral device. The software which handles the operation of each 
peripheral will be executed only when required. 
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1.2. INTRODUCTION TO THE MCS650X MICROPROCESSOR FAMILY 

 

The initial MOS Technology, Inc. microprocessor offering consists of the 
MCS6501, which is MC6800 compatible; the MCS6502, which has clock 
drivers on-chip; and three 28-pin processors, the MCS6503, MCS6504, 
and MCS6505. All of these devices are aimed at a specific range of 
applications. Therefore, it is important to develop an understanding of 
the capabilities of each and the differences between them. 
 
The MCS6501 has application in existing M6800 systems where 
conversion to the MOS Technology, Inc. processor is to be performed. This 
processor requires the full high-level two-phase clocks of the M6800 
system. The MCS6502 is expected to find application in all new designs 
which require a full 16-bit address bus. However, in the small cost-
sensitive system, the 28-pin processors can represent a savings in both 
processor cost and printed circuit board area. The MCS6503, MCS6504, 
and MCS6505 will find application in all new designs where the system 
will operate within the addressing limits. 
 
 1.2.1 The MCS6501 
 
The MCS6501 is the first member of the microprocessor family to be 
introduced. It is designed to be pin compatible with the M6800 and 
therefore conversion from the MC6800 to the MOS Technology, Inc. 
MCS6501 requires only that the system be reprogrammed. This allows 
the M6800 user to take full advantage of the software power 
(addressing modes, etc.) of the MCS650X processor family. 
 
Although the conversion process is fairly simple, it is important to keep in 
mind the differences between the MC6800 and the MCS6501. The pins 
on the MCS6501 all do the same general function as those on the 
MC6800 but the function performed may differ somewhat in detail. 
Figure 1.4 contains a detailed, pin-for-pin comparison of these two 
processors. A thorough understanding of this table, along with an 
understanding of the MCS650X software will allow the system designer 
to perform the conversion with very little difficulty. The MCS6501 
provides a full 16-bit address bus, 8-bit data bus and two interrupts. 
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PIN # 
Motorola 
6800 

MOS Technology 
6501 

PIN # 
Motorola 
6800 

MOS Technology 
6501 

1 VSS VSS 21 VSS VSS 
2* Halt Ready 22 A12 A12 
3 Φ1 (in) Φ1 (in) 23 A13 A13 
4 IRQ IRQ 24 A14 A14 
5* VMA VMA 25 A15 A15 
6 NMI NMI 26 D7 D7 
7 BA BA 27 D6 D6 
8 Vdd Vdd 28 D5 D5 
9* A0 A0 29 D4 D4 
10 A1 A1 30 D3 D3 
11 A2 A2 31 D2 D2 
12 A3 A3 32 D1 D1 
13 A4 A4 33 D0 D0 
14 A5 A5 34 R/W R/W 
15 A6 A6 35 N.C. N.C. 
16 A7 A7 36 DBE DBE 
17 A8 A8 37 Φ2 (in) Φ2 (in) 
18 A9 A9 38* N.C. N.C. 
19 A10 A10 39* T.S.C. N.C. 
20 A11 A11 40 Reset Reset 

*Differences 

PIN # MOTOROLA 6800 MOS TECHNOLOGY 6501 

   
2 Halt – Stops processor after 

completing current instruction. 
Address Bus in off state.  

Ready – Stops Processor during current 
instruction. Address Bus reflects current 
address being read. 

5 VMA – Signal determines when 
address from processor is valid. 

VMA – No need for Valid Memory 
Address Signal. All addresses are valid 
at all times. This pin is internally tied to 
Vdd and can be used as a VMA signal in 
high state. 

9 Address Bus uses Tri-State 
Output Buffers. 

Address Bus uses TTL level Output Drivers. 

38 No Connection No Connection 

39 T.S.C. – Three-State Control 
Controls all Three-State Buffers, 
Address Bus and Data Bus. 

N.C. – No need for TSC since Address is 
not Three-State and DBE Controls Three-
State of Data Bus. 

 
Pinout Comparison 

MOS TECHNOLOGY INC. MCS6501, MOTOROLA MC6800 
FIGURE 1.4 
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1.2.2 The MCS6502 
 
The second member of the processor family is a 40-pin device which 
provides all the features of the MCS6501, along with an "on-the-chip" 
oscillator and clock drivers. This device should be used in all new designs 
which require the capability of the 40-pin processors. The clock drivers 
can be driven with a single TTL level square wave or with the internal 
oscillator. The frequency of operation of the internal oscillator can be set 
by attaching an R-C combination to the chip and, if the clock stability is 
required, by attaching a crystal between the oscillator and ground. This 
feature totally eliminates the problems encountered in generating 
MC6800 type clock signals. 
 
As in the MCS6501, the MCS6502 provides a full 16-bit address bus, 8-
bit bi-directional data bus and two interrupts. In addition, the MCS6502 
provides a sync signal which indicates those cycles in which the processor 
is fetching an operation code from program memory. 
 

1.2.3 The MCS6503, MCS6504 and MCS6505 
 
Three 28-pin versions of the processor are available. These three differ 
in the number of address lines and the number of interrupts provided. 
Having all three options available allows the designer to tailor his 
processor to his particular application. 
 
The MCS6504 provides a total of 13 address pins and can, therefore, 
address a full 8K bytes in its memory space. However, this part provides 
only one interrupt request input, IRQ. The non-maskable interrupt (NMI) is 
not included in the pinouts of this device. 
 
The MCS6503 and MCS6505 provide one less address line. In the 
MCS6503, this address line is replaced with a second interrupt input, 
NMI. In the MCS6505, this address line is replaced by the RDY signal. All 
other functions on these processors are the same. The details of each of 
these pins are discussed in the following sections. 
 
The operation of the various busses, control signals, etc. is exactly the 
same on all MCS650X products with all processors obeying the system 
specifications discussed in Section 1.3 of this manual. 
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1.3 MCS6500 SYSTEM CONCEPTS 
 

1.3.1 Bus Structure 
 
The MCS6500 microcomputer system is organized around two primary 
busses. Each bus consists of a set of parallel paths which can be used to 
transfer binary information between the devices in a system. The first bus, 
known as the ADDRESS BUS, is used to transfer the address generated 
by the processor to the address inputs of the memory and peripheral 
interface devices. The processor is the only source of addresses in a 
normal system, so this bus is referred to as "unidirectional." The address 
bus consists of 16 lines on the MCS6501 and MCS6502. This allows the 
processor to access (READ or WRITE) up to a total of 65,536 memory 
words, registers, etc. In the MCS6503, MCS6504, and MCS6505, the 
address bus contains fewer lines; therefore, they operate with a smaller 
"address space." This is discussed in detail in Section 1.1.3. 
 
The data bus in the MCS6500 microcomputer system consists of an 8-bit 
bi-directional data path. These lines transfer data from the processor to 
the selected memory word, etc. during a WRITE operation and from 
memory into the processor during a READ operation. All data and all 
instructions are transmitted on the data bus. 
 
The direction of the data transfers is controlled by the READ/WRITE 
(R/W) line on the processor. This line performs the Write Enable function 
described in Section 1.1.4.3. As long as the R/W line is high (> 2.4V DC), 
all data transfers will take place from memory to the processor (READ 
operation). This line will go low only when the processor is going to WRITE 
data out to memory. 
 
As in most microcomputer systems, the timing of all data transfers is 
controlled by the system clock. The clock itself is actually two non- 
overlapping square waves. This two-phase clock system can best be 
thought of as two alternating positive-going pulses. This text will refer to 
the clocks as Phase One and Phase Two. A Phase One clock pulse is the 
positive pulse during which the address lines change and a Phase Two 
clock pulse is the positive pulse during which the data is transferred. The 
timing of the signals on the Address Bus, Data Bus, and R/W line are 
shown in Figures 1.5 through 1.8. All signal transitions are specified with 
respect to the Phase One and Phase Two clock signals. 
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In particular, the address lines and the R/W line will stabilize during 
Phase One, and all data transfers will take place during Phase Two. 
 
The specific timing specifications for operating at a 1 MHz clock rate are 
also given in Figure 1.5. Note that the sequence of operations will be the 
same for all processors. However, these timing specifications will change 
for devices which are specified to operate faster than 1.0MHz. The 
address is guaranteed to be stable 300 nanoseconds after the leading 
edge of Phase One, and the data must be stable 100 nanoseconds 
before the trailing edge of Phase Two. At 1.0 MHz operation, this allows 
the memory devices approximately 575ns to make data available on the 
data bus. Although there are many factors which determine the actual 
data and address generated within the system, it is important to keep in 
mind that the basic operation shown in Figures 1.6, 1.7 and 1.8 does not 
change. These figures specify the system bus discipline which applies to 
all MOS Technology, Inc. processors and support chips. 
 

1.3.2 Processor Interrupts 

 
Through the generation of processor interrupt signals, the peripheral 
devices (printers, keyboards, etc.) can request service from the processor. 
Although this technique is relatively simple in concept, the proper 
generation and control of interrupts is one of the most important problems 
which the designer will face. Total system capability can be greatly 
expanded if the processor is required to execute the peripheral software 
only when it is absolutely necessary. This is the goal of a well-planned 
interrupt structure. The interrupt structure is very much a systems 
sophistication problem since it is the entire system which must properly 
respond to the interrupt inputs. In fact, the actual signals to which the 
system must respond are usually applied to the inputs of a peripheral 
interface device. In this device, the interrupts are enabled, disabled and 
latched until the interrupt is processed. The peripheral interface device 
generates signals which meet the requirements of the processor interrupt 
inputs. 
 
There are two interrupt input lines to the microprocessor, IRQ (Interrupt 
Request) and NMI (Non-Maskable Interrupt). 
 
Since the requirements of the two interrupt inputs differ, they will be 
discussed separately below. The response of the processor to these 
inputs is very similar, however, after the interrupt is recognized. For this 
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CHARACTERISTIC SYMBOL MIN. TYP. MAX UNIT 

Cycle Time TCYC 1.0 μs — — μs 

Clock Pulse Width             Φ1 

(measured at Vcc-0.2V)     Φ2 

PWH Φ1 

PWH Φ2 

430 
430 

— — ns 

Rise and Fall Times 
(Measured from 0.2V to Vcc-0.2V) 

TF, TR — — 25 ns 

Delay time between Clocks 
(Measured at 0.2V) 

TD 0 — — ns 

 
 

CHARACTERISTIC SYMBOL MIN. TYP. MAX UNIT 

Read/Write Setup Time from MCS650X TRWS — 100 300 ns 

Address Setup Time from MCS650X TADS — 200 300 ns 

Memory Read Access Time TR 
TCYC – (TADS – TDSU – TR) 

TACC — — 500 ns 

Data Stability Time Period TDSU 100 — — ns 

Data Hold Time TH 10 30 — ns 

Enable High Time for DBE Input TEH 430 — — ns 

Data Setup Time from MCS650X TMDS — 150 200 ns 

 
 

Clock and Read/Write Timing Table (1MHz Operation) 
FIGURE 1.5 
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Two Phase Clock Timing 

FIGURE 1.6 
 

 
 

 
 

 
Timing for Reading Data from Memory or Peripherals 

FIGURE 1.7 
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Timing for Writing Data to Memory or Peripherals 
FIGURE 1.8 
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reason, the internal operation of the processor during interrupt servicing is 
discussed in the detailed analysis of the processor chip. Instead, this section 
will concentrate on the system level considerations which are required to 
assure proper operation of the interrupt structure. 
  

1.3.2.1 Applications for Interrupts 
 
One of the most important tasks facing the microcomputer system designer is 
the determination of those signals which will cause processor interrupts and 
those operations which will take place in response to these interrupts. A 
detailed discussion of these considerations is included in Chapter 2 of the 
manual; however, a few examples of interrupt-driven operations will be 
presented here to help the designer develop an understanding for why this 
technique is used extensively in microcomputer systems. 
 
Example 1 — A Fully-Decoded Keyboard 
 
The problem of data entry is solved in many systems by a keyboard. In small 
systems, the interpretation of the binary code associated with each key can be 
determined by the processor. However, in large data terminals, the keyboard 
usually includes an encoder which generates the unique code corresponding to 
each key. When a key is closed, the corresponding code is placed on the output 
pins and a strobe signal is generated to indicate that a key has been pressed. 
  
The keyboard represents a perfect candidate for interrupt-driven operation. 
The interrupts occur relatively infrequently and the operation to be 
performed is relatively simple. The keyboard strobe line is connected directly 
to an interrupt input on a peripheral interface device. Each time a strobe 
signal is generated, an interrupt occurs, the processor reads the data on the 
peripheral port into memory, analyzes this data and then returns to the 
program that was in process. If no keys are pressed, the processor spends 
no time at all in servicing the keyboard. 
 
Without the interrupts, the processor would have to read the keyboard 
data into memory periodically in order to detect an active key. This 
operation would be performed about every fifty to one hundred 
milliseconds. In addition to detecting an active key, the processor must make 
sure that each separate activation of a key is detected once and only once. 
This is discussed in sections 1.3.2.5 and 1.3.2.6. This software is much more 
complex than the simple interrupt routine. Another drawback of non-
interrupt processing is that the processor is required to spend a periodic 
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portion of its time on the keyboard. In many systems, this is not a 
problem, but in large terminals, etc., the time spent checking for 
keyboard strobes could be better spent in other operations. The 
designer must, therefore, ask himself if the system under development 
is such that the processor can perform the keyboard strobe checking 
function while still completing its other tasks. 
 
Example 2 — A Scanned Display 
 
Although time is a major factor in determining the necessity of interrupts, 
the interrupt technique can also be extremely useful when performing 
parallel operations. A prime example of this can be found in a system 
which contains a digital display and/or printer. 
 
A digital display is usually "scanned" such that each digit is driven for 
a short period of time in sequence. The entire display is scanned at a 
rate which the eye cannot detect. However, it can be noted here that 
the display requires scan-related attention from the processor at fixed 
intervals. It is very difficult for the processor to calculate repetitive time 
intervals while it is performing its normal system program routines. The 
processor would much prefer to run the system program without 
consideration for the display time intervals, only executing the display 
software when it is required. 
 
A solution to the above problem is the generation of processor interrupts 
at fixed intervals using an external counter or clock. Each time an 
interrupt occurs, the data for the next digit in the display is placed on 
an output port. The processor then returns to the program it had been 
executing. 
 
Both of the operations described above represent solutions to system 
problems. Events which happen very infrequently and events which must 
be performed in parallel with other events or in parallel with the main 
system program should be seriously considered as candidates for 
interrupts. Additional considerations are described in Chapter 2 of this 
manual; however, it is important to note here that the typical system 
may have several sources of interrupts, each with its own timing and 
each with its own set of operations which must be performed in response 
to the interrupts. 
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1.3.2.2 Interrupt Prioritizing 
 
After a careful analysis of the total system and a determination of all the 
sources of interrupts, the designer must ask himself, "What happens if more 
than one interrupt source requires attention at one time?" A priority level must 
be established between the various interrupt sources. Which ones must be 
taken care of within a very short period? Which ones can be put off for a 
while? This prioritizing and the technique for selecting among several 
concurrent interrupts is very important to the system operation and should be 
established early in the system development process. 
  
The MCS650X-based system can employ several hardware methods of 
determining the highest priority active interrupt. These usually involve using a 
special "priority encoder" which allows the processor to go directly to the 
software which services the highest priority interrupt. After this is complete, it will 
go to the next higher priority and execute that software. However, the 
MCS650X family provides a much less expensive method of interrupt 
prioritizing. This is the "polled" interrupt. With this technique, each time an active 
interrupt source is detected, the processor executes a "polled" interrupt program 
that interrogates the highest priority interrupt, then the next highest and so on 
until an active interrupt is located. The program services that interrupt and returns 
to the "polled" interrupt program and continues to interrogate the next highest 
priority interrupt until all have been interrogated or clears the interrupt disable 
to allow nested interrupts. The "polled" interrupt program is always executed 
when an interrupt occurs so that all interrupts that occur concurrently will be 
serviced in order of priority level. 
 
Several hardware techniques for prioritizing interrupts are discussed in 
Chapter 2 of this manual. The next section, however, describes the system 
interconnect which allows use of the simple "polled" interrupt. 
 

1.3.2.3 System Interconnect for Interrupts 

 
In the simple "polled" interrupt technique for prioritizing interrupts, the 
interrupt software actually determines the highest priority active 
interrupt. The IRQ or NMI interrupt request signals simply cause the 
processor to jump to the polling software. 
 
For this reason, it is possible to "OR" the various interrupt signals 
together to form the signal for the processor. Any active interrupt 
source will then cause the processor to do the interrupt polling and 
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servicing operation. Provision for generation of this OR function is 
provided in the MCS6500 family peripheral interface devices. Since 
these peripheral adapters perform many of the enabling and latching 
functions necessary for proper interrupt servicing, the peripheral 
adaptor interrupt output then provides the actual signal which interrupts 
the processor. These interrupt outputs can be "WIRE-OR'd" by 
connecting them all together and then connecting this single line to the 
processor. This input should then be pulled to +5V with a resistor. Any 
one of the interrupt outputs on the peripheral adaptors can then pull 
this interrupt low. This simple configuration is shown in Figure 1.9. 
 

1.3.2.4 Interrupt Servicing 

 
Although a great deal has been said previously about the process of 
establishing interrupts and determining just what happens in response 
to an interrupt, it would be useful to detail the sequence which takes 
place when an interrupt is recognized by the processor. This will 
establish a basis for understanding of the details of the processor 
interrupt inputs. 
 
An interrupt request is signaled by a GND (< 0.4V) signal on the 
interrupt request input. This interrupt will be recognized after the 
processor completes the instruction which it is currently executing. The 
next step is to store enough of the contents of the internal processor 
registers to assure that the processor can resume execution of the 
program which was interrupted. In particular, the Program Counter and 
the Processor Status Register are stored in a series of memory locations 
specified by another internal register, the Stack Pointer. As discussed in 
Chapter 9 of the Programming Manual, saving the contents of the 
Program Counter and Processor Status register uniquely defines, in 
memory, the state of the microprocessor at the time the interrupt 
occurred. The processor then goes to two fixed locations in memory to 
determine the address low and address high of the interrupt software. 
 
The operation to this point is automatic and is determined by the internal 
processor logic. After the processor has properly set the address bus, 
execution of the interrupt program commences. Everything which occurs 
subsequently is determined by the system software. 
 
The total interrupt software described above will consist of a complex 
combination of polling and interrupt servicing routines. However, unless 
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Interrupt Wire OR'd Hardware Configuration 
from Peripheral Interface Devices to Microprocessor 

FIGURE 1.9 
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A hardware prioritizing scheme is used, the actual system 
interconnections will not become any more complex than that shown in 
Figure 1.9. 
 

1.3.2.5 Interrupt Request (IRQ) 
 
As stated in Section 1.3.2, the two interrupt lines for the microprocessor 
are IRQ and NMI. The requirements for proper operation of the 
maskable Interrupt Request input (IRQ) are more stringent than for the 
second interrupt input, NMI. This is due primarily to the fact that NMI is 
edge-sensitive. With the IRQ input, the processor will be interrupted any 
time the signal on IRQ is GND (< 0.4V) and the internal Interrupt 
Disable flag is cleared. The Interrupt Disable flag (I) is a single bit in 
the internal Processor Status Register. The details of this register are 
described in Section 3.2 of the Programming Manual. 
 
In the processing of interrupt request from the IRQ input, the I flag is 
extremely important. This is the element which assures that an interrupt 
will be recognized and serviced only once for each request and only 
when an interrupt is desired. This is described in detail below. 
 
Figure 1.10 details the sequence of operations which should take place 
during the servicing of an IRQ interrupt. A positive or negative transition 
of the signal from the peripheral device (printer, keyboard, etc.) is 
detected on the edge-sensitive inputs to the peripheral interface device. 
If the interrupt is enabled within the peripheral interface device, the 
interrupt request output (IRQ) on this chip will go low. The interrupt 
condition is latched within the peripheral interface device to allow 
sufficient time for the processor to poll the interrupt sources, assuring 
that the interrupt signal will not be cleared before the polling can be 
completed. This latch is reset by the processor as it executes the 
software associated with that interrupt. Details of this operation are 
described in Section 1.4.1.2.10 
 
The Interrupt Disable flag (I) is set automatically when the processor 
recognizes an interrupt. This assures that this same interrupt will not be 
recognized again. Resetting this flag can be performed manually with 
an instruction in the program or automatically with a "Return from 
Interrupt" instruction. It is very important that "I" not be cleared before 
the interrupt input is reset. Performing the "Clear I" instruction too early 
in the program can cause this same interrupt to be recognized again. 
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Sequence to Service IRQ 
FIGURE 1.10 
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The processor will then proceed to service this as if it were a new 
interrupt. 
 

1.3.2.6 Non-Maskable Interrupt (NMI) 
 
The NMI input to the processor is edge-sensitive. To cause an interrupt 
to occur, there must be a negative transition of the signal on the NMI 
input. This negative transition will cause a single interrupt to occur. After 
servicing the interrupt, the processor will ignore this input until the NMI 
signal goes high (> +2.4V) and then back to ground. 
 
The response to an NMI interrupt signal cannot be disabled within the 
processor. After the processor completes the instruction being executed, 
it will recognize the interrupt and will proceed to service the interrupt 
as described in the previous section. The proper discipline to employ in 
all interrupts is for the interrupt signal to be latched until the processor 
completes servicing the interrupt. This method of operation is assured if 
all the interrupts are connected to the interrupt inputs of the peripheral 
interface devices in the family. 
 
Processing of multiple interrupts in a polled interrupt structure requires 
that all of the interrupts be polled before executing a "Return from 
Interrupt" instruction. This is necessitated by the "WIRE-OR" technique 
for combining the interrupts, since no knowledge exists of which line 
went to ground. If one of the interrupts is left unserviced, it will hold the 
NMI signal to ground, disabling the interrupts from all other sources 
since it is necessary for the NMI signal to go high (> 2.4V) and back 
low again for an interrupt to occur. This is not true for the IRQ input since 
this latch is level-sensitive. Performing a "Return from Interrupt" before 
all IRQ interrupt sources are serviced will simply cause another IRQ 
interrupt to occur. 
 

1.3.3 System Reset 
 
One of the basic system control functions is the system RESET signal. 
Whether this signal is generated automatically by external power-on 
circuitry or manually from a push-button switch, the system components 
must obey a fixed set of rules to assure proper system operation. This 
is particularly true for the peripheral interface devices. 
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In the MCS650X-based systems, an assumption is made that RESET pins 
on all peripheral interface devices and on the processor will be held 
low during power-on until the supply voltages and the clocks have 
stabilized. This procedure assures that the peripheral pins will remain in 
a known state until the entire system is initialized and the processor is 
ready to assume control of the output lines, i.e., is ready to run the 
system program. 
 
It should be mentioned that in the entire set of microcomputer chips, the 
contents of latches, registers, etc. is totally random after power is 
applied. On the peripheral output pins, random data can be disastrous. 
The only way to force these lines to a known condition is to apply the 
RESET signal. The designer can then make sure that the known condition 
will not cause spurious operations in the peripheral devices. The effect 
of RESET on the peripheral chips is discussed in the analysis of each chip. 
 
In the processor, the single register which must be placed in a known 
state is the program counter. This is the register which selects the 
instructions to be executed. The RESET input causes the program counter 
to go to the first instruction in the system program. The specific details 
of this operation are discussed in Section 1.4.1.2.11. 
 
There is one other very important function performed by the RESET input 
on the peripheral interface devices. Although the recognition of the 
processor interrupt signals is automatic and does not depend on 
software, the sequence of operations performed by the processor to 
totally service an interrupt is determined by the program. Until the 
various internal registers in the processor have been initialized, the 
processor is not ready to respond properly to any external interrupts. 
For this reason, it is important that the system RESET disable all external 
interrupt signals until they are enabled by the processor. The 
programmer can then make sure that the system has been properly 
initialized before the interrupts are enabled. 
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MCS650X Internal Architecture 
FIGURE 1.11 
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1.4 THE MICROPROCESSORS 

 

1.4.1 The MCS6501 
 

1.4.1.1 Introduction 

 
The members of the MCS650X microprocessor family contain very similar 
internal architectures. A block diagram of this architecture is shown in Figure 
1.11. This section begins with an analysis of this block diagram, discussing the 
function of the various registers, data paths, etc. A detailed discussion of the 
operation of the various pins on the chip follows. 
 
The internal organization of the processor can be split into two sections. In 
general, the instructions obtained from program memory are executed by 
implementing a series of data transfers in one section of the chip (register 
section). The control lines which actually cause the data transfers to take place 
are generated in the other section (control section). Instructions enter the 
processor on the data bus, are latched into the instruction register, and are 
then decoded along with timing signals to generate the register control signals. 
 
The timing control unit keeps track of the specific cycle being executed. This 
unit is set to "T0" for each instruction fetch cycle and is advanced at the 
beginning of each Phase One clock pulse. Each instruction starts in T0 and 
goes to T1, T2, T3, etc. for as many cycles as are required to complete 
execution of the instruction. Each data transfer, etc., which takes place in the 
register section is caused by decoding the contents of both the instruction 
register and the timing counter. 
 
Additional control lines which affect the execution of the instructions are 
derived from the Interrupt logic and from the Processor Status register. The 
Interrupt logic controls the processor interface to the interrupt inputs to assure 
proper timing, enabling, sequencing, etc. which the processor recognizes and 
services. 
 
The Processor Status register contains a set of latches which serve to control 
certain aspects of the processor operation, to indicate the results of processor 
arithmetic and logic operations, and to indicate the status of data either 
generated by the processor or transferred into the processor from outside. 
 
Since the real work of the processor is carried on in the register section of 
the chip, a detailed study will be made of this section. The components are: 
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 Data Bus Buffers 

 Input Data Latch (DL) 

 Program Counter (PCL, PCH) 

 Accumulator (A) 

 Arithmetic Logic Unit (ALU) 

 Stack Pointer (S) 

 Index Registers (X, Y) 

 Address Bus Latches (ABL, ABH) 

 Processor Status Register (P) 
 
At 1 MHz, the data which comes into the processor from the program 
memory, the data memory, or from peripheral devices, appears on the 
data bus during the last 100 nanoseconds of Phase Two. No attempt is 
made to actually operate on the data during this short period. Instead, 
it is simply transferred into the input data latch for use during the next 
cycle. The data latch serves to trap the data on the data bus during 
each Phase Two pulse. It can then be transferred onto one of the internal 
busses and from there into one of the internal registers. For example, 
data being transferred from memory into the accumulator (A) will be 
placed on the internal data bus and will then be transferred from the 
internal data bus into the accumulator. If an arithmetic or logic 
operation is to be performed using the data from memory and the 
contents of the accumulator, data in the input data latch will be 
transferred onto the internal data bus as before. From there it will be 
transferred into the ALU. At the same time the contents of the 
accumulator will be transferred onto a bus in the register section and 
from there into the second input to the ALU. The results of the arithmetic 
or logic operation will be transferred back to the accumulator on the 
next cycle by transferring first onto the bus and then into the 
accumulator. All of these data transfers take place during the Phase 
One clock pulse. 
 
The program counter (PCL, PCH) provides the addresses which step the 
processor through sequential instructions in the program. Each time the 
processor fetches an instruction from program memory, the contents of 
PCL is placed on the low order eight bits of the address bus and the 
contents of PCH is placed on the high order eight bits. This counter is 
incremented each time an instruction or data is fetched from program 
memory. 
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The accumulator is a general purpose 8-bit register which stores the results 
of most arithmetic and logic operations. In addition, the accumulator usually 
contains one of the two data words used in these operations. 
 
All logic and arithmetic operations take place in the ALU. This includes 
incrementing and decrementing of internal registers (except PCL and PCH). 
However, the ALU cannot store data for more than one cycle. If data is 
placed on the inputs to the ALU at the beginning of one cycle, the result is 
always gated into one of the storage registers or to external memory during 
the next cycle. Each bit of the ALU has two inputs. These inputs can be tied to 
various internal busses or to a logic zero; the ALU then generates the SUM, 
AND, OR, etc. function using the data on the two inputs. 
 
The stack pointer (S) and the two index registers (X and Y) each consist of 8 
simple latches. These registers store data which is to be used in calculating 
addresses in data memory. The specific operation of each of these is 
discussed in detail in the Programming Manual. 
 
The address bus buffers (ABL, ABH) consist of a set of latches and TTL 
compatible drivers. These latches store the addresses which are used in 
accessing the peripheral devices (ROM, RAM, and I/O). 
 

1.4.1.2 The MCS6501 Pinouts 
 
Figure 1.12 shows a diagram of the MCS6501 microprocessor with the 
various pins designated. These pins and their use in microcomputer systems 
are discussed separately below. 
 

1.4.1.2.1 Vcc, Vss — Supply Lines 
 
The Vcc and Vss pins are the only power supply connections to the chip. The 
supply voltage on pin 8 is +5.0V DC ±5%. The absolute limit on the Vcc 
input is +7.0V DC. 
 

1.4.1.2.2 AB00–AB15 — Address Bus 
 
The address bus buffers on the MCS650X family of microprocessors are 
push/pull type drivers capable of driving at least 130pF and one standard 
TTL load. 
 
The address bus will always contain known data as detailed in Appendix 
A. The addressing technique involves putting an address on the address 
bus which is known to be either in program sequence, on the same 
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MCS6501 Pinout Designations 
FIGURE 1.12 
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page in program memory or at a known point in RAM. A brief study of 
Appendix A will acquaint the designer with the detailed operation of this 
bus. 
 
The various processors differ somewhat in the number of address lines 
provided. In particular, the MCS6504 provides thirteen address lines (AB00 
– AB12) and the MCS6503 and MCS6505 provide twelve (AB00 – AB11). 
As a result, the MCS6504 can address 8,192 bytes of memory and the 
MCS6503 and MCS6505 can address 4,096 bytes. This total address space 
should prove to be more than sufficient for the small, cost-sensitive systems 
where these devices should find their greatest application. 
  
The specific timing of the address bus is exactly the same for all the 

processors. The address is valid 300ns (at 1 MHz clock rate) into the Φ1 clock 

pulse and stays stable until the next Φ1 pulse. This specification will only 
change for processors which are specified to operate at a higher clock rate. 
Figure 1.13 details the relation of address bus to other critical signals. 
 
Because of the reduced number of address lines on the 28-pin processors, it 
is possible to write a program which attempts to access non-existent memory 
address space, i.e., the address bits 13, 14, or 15 set to logic "1." These 
upper address bits in the program will be ignored and the program will drop 
into existing address space. This assumes proper memory management when 
using devices of large addressing capability such that the addressed 
memory space will fit within the constraints of a device with smaller available 
memory addressing capability. 
 

1.4.1.2.3 DB0–DB7 — Data Bus 
 
The processor data bus is exactly the same for the processors currently 
available and for the software-compatible processors which will be 
introduced in the near future. All instructions and data transfers between the 
processor and memory take place on these lines. The buffers driving the data 
bus lines have full "three-state" capability. This is necessitated by the fact 
that the lines are bi-directional. 
 
Each data bus pin is connected to an input and an output buffer, with the 
output buffer remaining in the "floating" condition except when the processor 
is transferring data into or out of one of the support chips. All inter-chip data 
transfers take place during the Phase Two clock pulse. During Phase One the 
entire data bus is "floating." 
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The data bus buffer is a push/pull driver capable of driving 130pF and 
one standard TTL load at the rated speed. At a 1 MHz clock rate, the 
data on the data bus must be stable 100ns before the end of Phase Two. 
This is true for transfers in either direction. Figure 1.13 details the 
relationship of the data bus to other signals. 
 

1.4.1.2.4 R/W — Read/Write 
 
The Read/Write line allows the processor to control the direction of data 
transfers between the processor and the support chips. This line is high 
except when the processor is writing to memory or to a peripheral 
interface device. 
 
All transitions on this line occur during the Phase One clock pulse 
(concurrent with the address lines). This allows complete control of the 
data transition which takes place during the Phase Two clock pulse. 
 
The R/W buffer is similar to the address buffers. They are capable of 
driving 130pF and one standard TTL load at the rated speed. Again, 
Figure 1.13 details the relative timing of the R/W line. 
 

1.4.1.2.5 DBE — Data Bus Enable 
 
On the MCS6501, a data bus enable signal is provided to allow external 
enabling of the data bus. This line is connected directly to the Phase Two 
input clock signal for any normally operating system and is detailed in 
Figure 1.13. 
 
The DBE signal affects only the data bus buffers. It does not affect 
processor timing and has no effect on the address of the R/W lines. 
 
This input is provided primarily for use in systems which use non-family 
devices for either the memory or the peripheral interface functions. In 
particular, it allows the data bus to be enabled for a period longer than the 
Phase Two clock pulse for systems requiring greater processor hold time on 
the data bus. This application is covered in greater detail in Chapter 2. 
 

1.4.1.2.6 VMA — Valid Memory Address 
 
As mentioned above, the MCS650X family of microprocessors 
always puts known addresses on the address bus and, as a result, 
does not require a VMA signal. However, to remain pin-compatible 
with the MC6800, the VMA pin is connected internally to the Vcc 
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power supply. This assures operation in systems in which VMA is 
part of the chip-select function. This pin is not available on the 28-
pin processors. 
  

1.4.1.2.7 BA — Bus Available 
 
The bus available signal is provided on the MCS6501 to signal to 
a DMA controller, etc. that the processor is stopped and that the 
data and address busses can be used for other than processor 
program execution. 
 
This operation is similar to that of the MC6800 bus available signal 
except that much less time is required to stop the MCS6501 since 
the MC6800 requires completion of the current instruction before 
stopping. If no write operation takes place during the cycle in which 
the RDY signal goes low, the BA will go high (> 2.4V) during Phase 
Two of the same cycle. In general, BA will go high during the first 
Phase Two pulse during which the R/W line is high. For the current 
processors, the maximum time is 3½ cycles. 
 

1.4.1.2.8 RDY — Ready 
 
The RDY input delays execution of any cycle during which the RDY 
line is pulled low. This line should change during the Phase One 
clock pulse. This change is then recognized during the next Phase 
Two pulse to enable or disable the execution of the current internal 
machine cycle. This execution normally occurs during the next Phase 
One clock; timing is shown in Figure 1.13. 
 
The primary purpose of the RDY line is to delay execution of a 
program fetch cycle until data is available from memory. This has 
direct application in prototype systems employing light-erasable 
PROMs or EAROMs. Both of these devices have relatively slow 
access times and require implementation of the RDY function if the 
processor is to operate at full speed. Without the RDY function a 
reduction in the frequency of the system clock would be necessary. 
 
The RDY function will not stop the processor in a cycle in which a 
WRITE operation is being performed. If the RDY line goes from high 
to low during a WRITE cycle the processor will execute that cycle 
and will then stop in the next READ cycle (R/W = 1). 
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1.4.1.2.9 NMI — Non-Maskable Interrupt 
 
The NMI input, when in the interrupted state, always interrupts the 
processor after it completes the instruction currently being executed. This 
interrupt is not "maskable," i.e., there is no way for the processor to 
prevent recognition of the interrupt. 
 
The NMI input responds to a negative transition. To interrupt the 
processor, the NMI input must go from high (> +2.4V) to low (< +0.4V). 
It can then stay low for an indefinite period without affecting the 
processor operation and without another interrupt. The processor will not 
detect another interrupt until this line goes high and then back to low. The 
NMI signal must be low for at least two clock cycles for the interrupt to 
be recognized, whereupon new program count vectors are fetched. 
 

1.4.1.2.10 IRQ — Interrupt Request 
 
The interrupt request (IRQ) responds in much the same manner as NMI. 
However, this function can be enabled or disabled by the interrupt inhibit 
bit in the processor status register. As long as the I flag (interrupt inhibit 
flag) is a logic 1, the signal on the IRQ pin will not affect the processor. 
 
The IRQ pin is not edge-sensitive. Instead, the processor will be 
interrupted as long as the I flag is a logic "0" and the signal on the 
IRQ input is at GND. Because of this, the IRQ signal must be held low 
until it is recognized, i.e., until the processor completes the instruction 
currently being executed. If I is set when IRQ goes low, the interrupt 
will not be recognized until I is cleared through software control. To 
assure that the processor will not recognize the interrupt more than 
once, the I flag is set automatically during the last cycle before the 
processor begins executing the interrupt software, beginning with the 
fetch of program count. 
  
The final requirement is that the interrupt input must be cleared before 
the I flag is reset. If there is more than one active interrupt driving these 
two lines (OR'd together), the recommended procedure is to service and 
clear both interrupts before clearing the I flag. However, if the 
interrupts are cleared one at a time and the I flag is reset after each, 
the processor will simply recognize any interrupts still active and will 
process them properly but more slowly because of the time required 
to return from one interrupt before recognizing the next.  If the 
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procedure recommended above is followed, each interrupt will be 
recognized and processed only once. Figure 1.14 provides several 
examples of interrupts, microprocessor recognition of each interrupt (IRQ 
and NMI), and processor selection of interrupts during overlapped 
requests. 
 

 
 

Examples of Interrupt Recognition by MCS650X 
FIGURE 1.14 

 
 
Each major event affecting the microprocessor is numbered in the figure 
with the corresponding explanations below. 
 
EVENT 
NUMBER 

 
SYSTEM ACTIVITY 

 
1. Processor is executing from main program and IRQ goes to 

low state. 

2. Upon completion of current instruction, the processor 
recognizes the interrupt, stores the contents of PC and P onto 
the stack and then sets I during the fetch of the interrupt 
vector. 

3. After servicing the interrupt, IRQ should be reset before 
resetting the interrupt mask bit to avoid double interrupting. 

4. Before the processor resumes normal main program execution 
the interrupt mask bit will be reset low. 

5. NMI now goes low, signalling a non-maskable interrupt 
request. 
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EVENT 
NUMBER 

 

 
SYSTEM ACTIVITY 

 
6. The NMI interrupt is recognized and serviced in the same 

manner as IRQ. 

7. The processor has resumed normal operation when NMI again 
goes low requesting an interrupt. 

8. The interrupt mask bit is set high in response to the NMI 
request. 

9. Here IRQ has gone low to signal an interrupt request. This 
request is ignored since the NMI interrupt is being serviced 
and the interrupt mask is set. 

10. The interrupt mask bit is reset after servicing the NMI interrupt. 

11. The processor is now able to recognize the IRQ signal, which 
is still low, and does so by setting the interrupt mask bit. 

12. During the servicing of IRQ, NMI goes from high to low. The 
processor then completes the current instruction and abandons 
the IRQ interrupt to service NMI. NMI is serviced regardless 
of the state of the interrupt mask bit. 

13. After completing the NMI interrupt routine, the processor will 
resume execution of the IRQ routine, even though IRQ has 
subsequently gone high. 

 
 

1.4.1.2.11 RES — Reset 
 
The RES line is used to initialize the microprocessor from a power-
down condition. During the power-up time this line is held low, and 
writing from the microprocessor is inhibited. When the line goes high, 
the microprocessor will delay 6 cycles and then fetch the new program 
count vectors from specific locations in memory (PCL from location 
$FFFC and PCH from location $FFFD). This is the start of the user's 
code. It should be assumed that any time the reset line has been pulled 
low and then high, the internal states of the machine are unknown and 
all registers must be re-initialized during the restart sequence. Timing 
for the reset sequence is shown in Figure 1.13. 
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1.4.2 The MCS6502 
 

1.4.2.1 Product Characteristics 
 
The MCS6502 is very similar to the MCS6501 described in detail in the 
previous section. It provides a full 16-pin address bus and therefore 
addresses a full 65,536 words in memory. It also has the same data bus, 
R/W and RDY available on the MCS6501. 
 
Figure 1.15 illustrates the pin configuration of the MCS6502. 
 
The differences between the two devices are as follows: 
 

1. The MCS6502 has the oscillator and clock driver on-chip, thus 
eliminating the need for an external high-level two-phase clock 
generator. 

 
2. The MCS6502 generates a SYNC signal instead of the bus 

available (BA) signal. The SYNC signal is described in detail 
below. 

 
3. Pin 5, corresponding to the MC6800 VMA signal, is not 

connected. 
 

4. The internal data bus enable function is connected directly to the 
phase two clock on the chip. Therefore pin 36 on the MCS6502 
is not connected. 

 

1.4.2.2 Device Timing — Requirements and Generation 
 
The MCS6501, in maintaining total bus compatibility with the MC6800 
product family, requires a 5-volt two-phase clock. The MCS6502, 
however, can be used with an externally generated time base consisting 
of either a TTL level single-phase clock, crystal oscillator or RC network. 
 
Figures 1.16 and 1.17 show the configuration for setting the frequency 
of oscillations with a crystal or with an RC network. 
 
Figure 1.16 displays the crystal mode of operation in which the frequency 
of oscillation is set by the crystal operating in conjunction with the RC 
network. Figure 1.17 displays the same interconnects as in the crystal 
mode of time base generation, with the crystal removed from the 
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MCS6502 Pinout Designation 
FIGURE 1.15 
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MCS6502 Parallel Mode Crystal Controlled Oscillator 
FIGURE 1.16a 

 

 
 

MCS6502 Series Mode Crystal Controlled Oscillator 
FIGURE 1.16b 

 
MCS6502 Time Base Generation — Crystal Controlled 

FIGURE 1.16 
 

 
 

MCS6502 Time Base Generator — RC Network 
FIGURE 1.17 
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circuit. Values of the feedback resistor, RF and feedback capacitor, CF 
will be different for the crystal mode versus the RC mode. While the 
detail specifications for values of RF and CF are found in the data sheet 
for the MCS6502, clock timing can be generated by use of combinations 
of RF in the range of 0 to 500K ohms and CF in the range of 2 to 12pF. 
The reader is referred to the MCS6502 data sheet for a detailed 
description of the application of RC networks and crystal oscillators for 
generation of the time base in these modes of operation. 
 
The MCS6500 bus discipline described in Section 1.3.1 is applicable 
wherever the oscillator is located. For data transfers to be properly 
carried out between the processor and the various support chips in the 
systems, the timing of the clocks controlling the internal processor 
operations must be very close to that of the phase two clock out of pin 
39 of the processor with no more than two TTL delays for clock buffering. 
It is important in systems which drive the clock generators with a TTL 
square wave that this input waveform not be used to control the 
peripheral chips unless care is taken to assure proper timing of the phase 
two clock being used in these support chips. 
 

1.4.2.3 SYNC Signal 
 
In the MCS6502, a SYNC signal is provided to identify those cycles in 
which the processor is doing an OP CODE fetch. The SYNC line goes high 
during phase one of an OP CODE fetch and stays high for the remainder 
of that cycle. If the RDY line is pulled low during the phase one clock pulse 
in which the SYNC line went high, the processor will stop in its current 
state. It remains in that state until the RDY line goes high. In this manner, 
the SYNC signal can be used to control RDY to cause single-instruction 
execution. This application is discussed in detail in Chapter 2. Figure 1.18 
contains a timing diagram for this signal. 
 

1.4.2.4 S.O. — Set Overflow 
 
This pin sets the overflow flag on a negative transition from TTL one to 
TTL zero. This is designed to work with a future I/O part and should not 
be used in normal applications unless the user has programmed for the 
fact the arithmetic operations also affect the overflow flag. 
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1. During a microprocessor write cycle, R/W signal low, the SYNC 

pulse does not occur. 

2. The R/W signal goes high to signal the beginning of a 
microprocessor read cycle. 

3. At the beginning of the read cycle a SYNC pulse will be 
generated. This pulse will last for one cycle time. The SYNC pulse 
indicates that the microprocessor is reading an OP CODE from 
the memory field. In this case the SYNC pulse is high for one 
cycle as the processor reads the OP CODE. 

4. The processor outputs another SYNC pulse indicating it has 
completed the previous instruction and is fetching another OP 
CODE. In this case three more cycles are needed to complete 
this instruction before the next SYNC pulse is generated. The 
SYNC pulse is aperiodic in that its generation is a function of the 
program and the resultant lengths of the instructions and 
addressing modes. 

 
 

MCS6502 SYNC Signal 
FIGURE 1.18 
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The operation of each function is exactly the same as on the MCS6502. 
 

Features MCS6503 MCS6504 MCS6505 

Addressing 
Capability 

4096 Bytes 
(AB00–AB11) 

8192 Bytes 
(AB00–AB12) 

4096 Bytes 
(AB00–AB11) 

Interrupt 
Request 

Capability 
IRQ, NMI IRQ IRQ 

"Ready" Signal — — RDY 

Timing 
Signals 
Required 

Single Phase 

TTL Level Φ0(IN), 
or Crystal or RC 

Single Phase 
TTL Level Φ0(IN), 
or Crystal or RC 

Single Phase 
TTL Level Φ0(IN), 
or Crystal or RC 

Other 
Control 
Signals 

RES, R/W RES, R/W RES, R/W 

 
 

Functional Features of MCS6503, MCS6504, MCS6505 
FIGURE 1.19 
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Figure 1.20 illustrates the pin designation for the three processors, 
indicating the tradeoffs that exist between control signals and addressing 
capability due to pinout constraints. Like the MCS6502, the 28-pin 
microprocessors also have the on-the-chip oscillator and clock drivers. 
Figures 1.21 and 1.22 display the circuitry necessary to generate the 
time base in the crystal mode and RC network mode respectively. Specific 
details on the values of feedback resistance, RF and feedback 
capacitance, CF can be found in the appropriate data sheet. 
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MCS6503, 4, 5 Parallel Mode Crystal Controlled Oscillator 
 

 
 

MCS6503,4,5 Series Mode Crystal Controlled Oscillator 
 

MCS6503, MCS6504, MCS6505 Time Base Generation 
Crystal Controlled 
FIGURE 1.21 

 

 
 

MCS6503, MCS6504, MCS6505 Time Base Generation 
RC Network 
FIGURE 1.22 
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1.5 PERIPHERAL INTERFACE DEVICE — MCS6520 
 

1.5.1 Introduction 
 
The MCS6520 is a direct pin for pin replacement for the Motorola 
MC6820 Peripheral Interface Adapter, the "PIA". As such, it meets all 
of the "PIA" electrical specifications and is totally hardware compatible 
with the MC6820. 
 
The MCS6520 is an I/O device which acts as an interface between the 
microprocessor and peripherals such as printers, displays, keyboards, 
etc. The prime function of the MCS6520 is to respond to stimulus from 
each of the two worlds it is serving. On the one side, the MCS6520 is 
interfacing with peripherals via two eight-bit bi-directional peripheral 
data ports. On the other side, the device interfaces with the 
microprocessor through an eight-bit data bus; this is the same data bus 
discussed at length in Section 1.3.1. It is, therefore, simplest to view the 
basic function of the MCS6520 as in the block diagram of Figure 1.23. 
 
 

 
 

 
Basic MCS6502 Interface Diagram 

FIGURE 1.23 
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In addition to the lines described above, the MCS6520 provides four 
interrupt input/peripheral control lines and the logic necessary for 
simple, effective control of peripheral interrupts. No external logic is 
required for interfacing the MCS650X microprocessor to most 
peripheral devices. 
 
The functional configuration of the MCS6520 is programmed by the 
microprocessor during systems initialization. Each of the peripheral data 
lines is programmed to act as an input or output and each of the four 
control/interrupt lines may be programmed for one of four possible 
control modes. This allows a high degree of flexibility in the overall 
operation of the interface. 
 
Some of the more important features of the MCS6520 are the 
following: 
 

 Compatibility with the MCS650X microprocessors.  

 Eight-bit bi-directional data bus for communication with the 
microprocessor.  

 Two eight-bit bi-directional ports for interface to peripherals.  

 Two programmable control registers.  

 Two programmable Data Direction Registers.  

 Four individually controlled interrupt input lines — two usable 
as peripheral control outputs.  

 Handshake control logic for input and output peripheral 
operation.  

 High impedance three-state and direct transistor drive 
peripheral lines.  

 Program controlled interrupt and interrupt mask capability. 
 
 

1.5.2 Organization of the MCS6520 
 
Figure 1.25 contains a block diagram of the MCS6520 showing the 
internal registers and data paths and the various inputs and outputs on 
the device. This section contains a general description of the internal 
organization of the device along with a discussion of how the various 
registers affect one another. The following sections discuss the details 
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MCS6520 Pinout Designations Peripheral Interface Adaptor 
FIGURE 1.24 
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MCS6520 Internal Architecture 
FIGURE 1.25 
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of the inputs and outputs on the chip, along with a detailed discussion 
of the operation of each register. The final section discusses the 
MCS6520 from an operational viewpoint, describing the interaction of 
the register bits, input/output lines, etc. 
 
The MCS6520 is organized into two independent sections referred to 
as the "A Side" and the "B Side." Each section consists of a Control 
Register (CRA, CRB), Data Direction Register (DDRA, DDRB), Output 
Register (ORA, ORB), Interrupt Status Control and the buffer necessary 
to drive the Peripheral Interface busses. 
 

1.5.2.1 Data Input Register 
 
When the microprocessor writes data into the MCS6520, the data which 
appears on the data bus during the Phase Two clock pulse is latched 
into the Data Input Register. It is then transferred into one of six internal 
registers of the MCS6520 after the trailing edge of Phase Two. This 
assures that the data on the peripheral output lines will not "glitch," i.e., 
the output lines will make smooth transitions from high to low or from 
low to high and the voltage will remain stable except when it is going 
to the opposite polarity. 
 

1.5.2.2 Control Registers (CRA and CRB) 
 
Figure 1.29 illustrates the bit designation and functions in the Control 
Registers. The Control Registers allow the microprocessor to control the 
operation of the interrupt lines (CA1, CA2, CB1, CB2), and peripheral 
control lines (CA2, CB2). A single bit in each register controls the 
addressing of the Data Direction Registers (DDRA, DDRB) and the 
Output Registers (ORA, ORB) discussed below. In addition, two bits (bit 
6 and 7) are provided in each control register to indicate the status of 
the interrupt input lines (CA1, CA2, CB1, CB2). These interrupt status bits 
(IRQA, IRQB) are normally interrogated by the microprocessor during 
the interrupt service program to determine the source of an active 
interrupt. These are the interrupt lines which drive the interrupt input 
(IRQ, NMI) of the microprocessor. The other bits in CRA and CRB are 
described in the discussion of the interface to the peripheral device 
(Section 1.5.4). 
 
The various bits in the control registers will be accessed many times 
during a program to allow the processor to enable or disable interrupts, 
change operating modes, etc. as required by the peripheral device 
being controlled. 
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1.5.2.3 Data Direction Registers (DDRA, DDRB) 
 
The Data Direction Registers allow the processor to program each line 
in the 8-bit Peripheral I/O port to act as either an input or an output. 
Each bit in DDRA controls the corresponding line in the Peripheral A port 
and each bit in DDRB controls the corresponding line in the Peripheral 
B port. Placing a "0" in the Data Direction Register causes the 
corresponding Peripheral I/O line to act as an input. A "1" causes it to 
act as an output. 
  
The Data Direction Registers are normally programmed only during the 
system initialization routine which is performed in response to a Reset 
signal. However, the contents of these registers can be altered during 
system operation. This allows very convenient control of some peripheral 
devices such as keyboards. 
 

1.5.2.4 Peripheral Output Registers (ORA, ORB) 

 
The Peripheral Output Registers store the output data which appears 
on the Peripheral I/O port. Writing a "0" into a bit in ORA causes the 
corresponding line on the Peripheral A port to go low (< 0.4V) if that 
line is programmed to act as an output. A "1" causes the corresponding 
output to go high. The lines of the Peripheral B port are controlled by 
ORB in the same manner. 
 
Addressing of these registers is discussed in Section 1.5.3.4. 
 

1.5.2.5 Interrupt Status Control 
 
The four interrupt/peripheral control lines (CA1, CA2, CB1, CB2) are 
controlled by the Interrupt Status Control (A, B). This logic interprets the 
contents of the corresponding Control Register, detects active transitions 
on the interrupt inputs and performs those operations necessary to 
assure proper operation of these four peripheral interface lines. The 
operation of these lines is described in detail in Section 1.5.4.2. 
 

1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB) 
 
The Buffers which drive the peripheral I/O ports and the data bus 
provide the current and voltage drive necessary to assure proper 
system operation and to meet the device specifications. 
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1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors 
 
The MCS6520 interfaces to the microprocessor with an 8-bit bi-
directional data bus, 3 chip-select lines, 2 register-select lines, 2 
interrupt request lines, read/write line, enable line and reset line. 
 

1.5.3.1 Data Bus (D0–D7) 
 
The 8-bit, bi-directional data bus allows the transfer of data between 
the microprocessor and the MCS6520. The data bus output drivers are 
3-state devices that remain in the high impedance state except when 
the microprocessor reads data from the peripheral adapter. This data 
bus is the same as discussed in Section 1.3.1, "Bus Structure." 
 

1.5.3.2 Enable (E) 
 
The Enable input is the only microprocessor interface timing input on the 
peripheral interface device. All data transfers into and out of the 
MCS6520 are controlled by this signal. In normal operation, this input 
should be connected to the phase two clock signal. In the case of the 
MCS6501, this is the Φ2 clock generated external to the microprocessor 
chip. For on-chip oscillator products (MCS6502, MCS6503, MCS6504 
and MCS6505), the enable pulse becomes Φ2(OUT). 
 

1.5.3.3 Read/Write (R/W) 
 
This signal is generated by the microprocessor to control the direction 
of data transfers on the data bus. A low (< 0.4V) on this line enables 
the input buffers (microprocessor Write) and data is transferred from 
the microprocessor to the MCS6520 under control of Enable input if the 
device has been chip-selected. A high on the R/W line allows the 
MCS6520 to transfer data to the data bus buffers. The data bus buffers 
are enabled when the proper chip-select and Enable Signals are 
present. Figure 1.26 illustrates the Read/Write timing. 
 

1.5.3.4 Chip Select Lines (CS1, CS2, CS3) 
 
These three inputs allow the microprocessor to select the proper 
peripheral interface device. CS1 and CS2 must be high and CS3 must 
be low for selection of the device. Data transfers are then performed 
under control of the Enable and R/W signals. These lines are normally 
connected to the address lines on the microprocessor, either directly or 
through address decoders. 
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Microprocessor Interface Timing – Read 
FIGURE 1.26a 

 
 

 
 

Microprocessor Interface Timing – Write 
FIGURE 1.26b 
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As described in Section 1.5.5.2, a single bit in each Control Register (CRA 
and CRB) controls access to the Data Direction Register or the Peripheral 
interface. If bit 2 in the Control Register is a "1," a Peripheral Output register 
(ORA, ORB) is selected, and if bit 2 is a "0," the Data Direction Register is 
selected. Internal registers are selected by the Register Select lines (RS0, 
RS1) and the Data Direction Register Access Control bit as follows: 
 
  Data Direction 

Register Access 
Control Bit 

 

RS1 RS0 CRA-2 CRB-2 Register Selected 

0 0 1 — Peripheral Interface A 
(See Section 1.5.3.5.1) 

0 0 0 — Data Direction Register A 

0 1 — — Control Register A 

1 0 — 1 Peripheral Interface B 
(See Section 1.5.3.5.2) 

1 0 — 0 Data Direction Register B 

1 1 — — Control Register B 

 
If the programmer wishes to write the data into DDRA, ORA, DDRB, or ORB, 
he must first set bit 2 in the proper Control Register. The desired register can 
then be accessed with the address determined by the address interconnect 
technique used. (See Chapter 2, Section 2.3.1 for a discussion of addressing 
in MCS650X systems.) 
 

1.5.3.5 Register Select Lines (RS0), (RS1) 
 
These two register select lines are used to select the various registers inside 
the MCS6520. These input lines are used in conjunction with internal control 
registers to select a particular register that is to be accessed by the 
microprocessor. These lines are normally connected to microprocessor 
address output lines. These lines operate in conjunction with the chip-select 
inputs to allow the microprocessor to address a single 8-bit register within 
the microprocessor address space. This register may be an internal register 
(CRA, ORA, etc.) or it may be a Peripheral I/O port. 
 
The processor can write directly into the Control Registers (CRA, CRB), the 
Data Direction Registers (DDRA, DDRB) and the Peripheral Output 
Registers (ORA, ORB). In addition, the processor can directly read the 
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contents of the Control Registers and the Data Direction Registers. Accessing 
the Peripheral Output Register for the purpose of reading data back into 
the processor operates differently on the ORA and the ORB registers and 
therefore are discussed separately below. 
 

1.5.3.5.1 Reading the Peripheral A I/O Port 
 
The Peripheral A I/O port consists of 8 lines which can be programmed to 
act as inputs or outputs. When programmed to act as outputs, each line 
reflects the contents of the corresponding bit in the Peripheral Output 
Register. When programmed to act as an input, these lines will go high or 
low depending on the input data.  
The Peripheral Output Register (ORA) has no effect on those lines 
programmed to act as inputs. The 8 lines of the Peripheral A I/O port 
therefore contain either input or output data depending on whether the line 
is programmed to act as an input or an output. Figure 1.27a illustrates the 
interface timing. 
 
Performing a Read operation with RS1 = 0, RS0 = 6 and the Data Direction 
Register Access Control bit (CRA-2) = 1, directly transfers the data on the 
Peripheral A I/O lines into the processor (via the data bus). This will contain 
both the input and output data. The processor must be programmed to 
recognize and interpret only those bits which are important to the particular 
peripheral operation being performed. 
 
Since the processor always reads the Peripheral A I/O port pins instead of 
the actual Peripheral Output Register (ORA), it is possible for the data read 
into the processor to differ from the contents of the Peripheral Output 
Register for an output line. This is true when the I/O pin is not allowed to go 
to a full +2.4V DC when the Peripheral Output register contains a logic 1. In 
this case, the processor will read a 0 from the Peripheral A pin, even though 
the corresponding bit in the Peripheral Output register is a 1. 
 

1.5.3.5.2 Reading the Peripheral B I/O Port 
 
Reading the Peripheral B I/O port yields a combination of input and output 
data in a manner similar to the Peripheral A port. However, data is read 
directly from the Peripheral B Output Register (ORB) for those lines 
programmed to act as outputs. It is therefore possible to load down the 
Peripheral B Output lines without causing incorrect data to be transferred 
back into the processor on a Read operation. Figure 1.27b illustrates the 
timing. 
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1.27a 
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1.27b 
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Peripheral I/O Port A Buffer 
FIGURE 1.28a 

 
 

 
 

Peripheral I/O Port B Buffer 
FIGURE 1.28b 
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The details of the Peripheral A and Peripheral B ports will be discussed in 
the next section under the discussion of the interface between the MCS6520 
and the Peripheral Devices. 
 

1.5.3.6 Reset (RES) 
 
The active low Reset line resets the contents of all MCS6520 registers to a 
logic zero. This line can be used as a power-on reset or as a master reset 
during system operation. 
 

1.5.3.7 Interrupt Request Line (IRQA, IRQB) 
 
The active low Interrupt Request lines (IRQA and IRQB) act to interrupt the 
microprocessor either directly or through external interrupt priority circuitry. 
These lines are "open source" (no load device on the chip) and are capable 
of sinking 1.6 milliamps from an external source. This permits all interrupt 
request lines to be tied together in a "wired-OR" configuration. The "A" and 
"B" in the titles of these lines correspond to the "A" peripheral port and the 
"B" peripheral port. Hence each interrupt request line services one peripheral 
data port. 
 
Each Interrupt Request line has two interrupt flag bits which can cause the 
Interrupt Request line to go low. These flags are bits 6 and 7 in the two 
Control Registers. These flags act as the link between the peripheral interrupt 
signals and the microprocessor interrupt inputs. Each flag has a 
corresponding interrupt disable bit which allows the processor to enable or 
disable the interrupt from each of the four interrupt inputs (CA1, CA2, CB1, 
CB2). 
 
The four interrupt flags are set by active transitions of the signal on the 
interrupt input (CA1, CA2, CB1, CB2). Controlling this active transition is 
discussed in the next section under the discussion of the interface between the 
MCS6520 and the peripheral device. 
 

1.5.3.7.1 Control of IRQA 
 
Control Register A bit 7 is always set by an active transition of the CA1 
interrupt input signal. Interrupting from this flag can be disabled by setting 
bit 0 in the Control Register A (CRA) to a logic 0. Likewise, Control Register 
A bit 6 can be set by an active transition of the CA2 interrupt input signal. 
Interrupting from this flag can be disabled by setting bit 3 in the Control 
Register to a logic 0. 
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Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Output Register 
A" operation. This is defined as an operation in which the proper chip-select 
and register-select signals are provided to allow the processor to read the 
Peripheral A I/O port. 
 

1.5.3.7.2 Control of IRQB 
 
Control of IRQB is performed in exactly the same manner as that described 
above for IRQA. Bit 7 in CRB is set by an active transition on CB1; interrupting 
from this flag is controlled by CRB bit 0. Likewise, bit 6 in CRB is set by an 
active transition on CB2; interrupting from this flag is controlled by CRB bit 3. 
 
Also, both bit 6 and bit 7 are reset by a "Read Peripheral B Output Register" 
operation. 
 
SUMMARY: 
 
IRQA goes low when CRA-7 = 1 and CRA-0 = 1 or when CRA-6 = 1 and CRA-3 = 1. 
 
IRQB goes low when CRB-7 = 1 and CRB-0 = 1 or when CRB-6 = 1 and CRB-3 = 1. 
  
The use of these interrupt flags and interrupt disable bits is discussed in more 
detail in Section 1.5.4. 
 
It should be stressed at this point that the flags act as the link between the 
peripheral interrupt signals and the processor interrupt inputs. The interrupt 
disable bits allow the processor to control the interrupt function. 
 

1.5.4 Interface Between MCS6520 and Peripheral Devices 
 
The MCS6520 provides 2 8-bit bi-directional ports and 4 interrupt/control 
lines for interfacing to peripheral devices. These ports and the associated 
interrupt/control lines are referred to as the "A" side and the "B" side. Each 
side has its own unique characteristics and will therefore be discussed 
separately below. 
 

1.5.4.1 Peripheral I/O Ports 
 
The Peripheral A and Peripheral B I/O ports allow the microprocessor 
to interface to the input lines on the peripheral device by loading data 
into the Peripheral Output Register. They also allow the processor to 
interface with the peripheral device output lines by reading the data on 
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the Peripheral Port input lines directly onto the data bus and into the internal 
registers of the processor. 
 

1.5.4.1.1 Peripheral A I/O Port (PA0–PA7) 
 
As discussed in Section 1.5.2.3. each of the Peripheral I/O lines can be 
programmed to act as an input or an output. This is accomplished by setting 
a "1" in the corresponding bit in the Data Direction Register for those lines 
which are to act as outputs. A "0" in a bit of the Data Direction Register 
causes the corresponding Peripheral I/O lines to act as an input. 
 
The buffers which drive the Peripheral A I/O lines contain "passive" pull-ups 
as shown in Figure 1.28a. These pull-up devices are resistive in nature and 
therefore allow the output voltage to go to Vdd for a logic 1. The switches 
can sink a full 1.6mA, making these buffers capable of driving one standard 
TTL load. 
 
In the input mode, the pull-up devices shown in Figure 1.28a are still 
connected to the I/O pin and still supply current to this pin. For this reason, 
these lines represent one standard TTL load in the input mode. 
 

1.5.4.1.2 Peripheral B I/O Port (PB0–PB7) 
 
The Peripheral B I/O port duplicates many of the functions of the Peripheral 
A port. The process of programming these lines to act as an input or an output 
has been discussed previously. Likewise, the effect of reading or writing this 
port has been discussed. However, there are several characteristics of the 
buffers driving these lines which affect their use in peripheral interfacing. 
These will be discussed below. 
 
The Peripheral B I/O port buffers are push-pull devices as shown in Figure 
1.28b. The pull-up devices are switched "OFF" in the "0" state and "ON" for 
a logic 1. Since these pull-ups are active devices, the logic "1" voltage is not 
guaranteed to go higher than +2.4V. They are TTL compatible but are not 
CMOS compatible. 
 
However, the active pull-up devices can sink up to 1mA at 1.5V. This current 
drive capability is provided to allow direct connection to Darlington transistor 
switches. This allows very simple control of relays, lamps, etc. 
 
Because these outputs are designed to drive transistors directly, the output 
data is read directly from the Peripheral Output Register for those lines 
programmed to act as inputs. 
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The final characteristic which is a function of the Peripheral B push-pull buffers 
is the high-impedance input state. When the Peripheral B I/O lines are 
programmed to act as inputs, the output buffer enters the high impedance 
state. These inputs will then have an impedance of greater than 1 megohm. 
 

1.5.4.2 Interrupt Input/Peripheral Control Lines (CA1, CA2, CB1, CB2) 
 
The four interrupt input/peripheral control lines provide a number of special 
peripheral control functions. These lines greatly enhance the power of the 
two general purpose interface ports (PA0–PA7, PB0–PB7). 
 

1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CA1, CA2) 
 
CA1 is an interrupt input only. An active transition of the signal on this input 
will set bit 7 of the Control Register A to a logic 1. The active transition can 
be programmed by the microprocessor by setting a "0" in bit 1 of the CRA 
if the interrupt flag (bit 7 of CRA) is to be set on a negative transition of the 
CA1 signal or a "1" if it is to be set on a positive transition. Note: A negative 
transition is defined as a transition from a high (> 2.4V) to a low (< 0.4V), 
and a positive transition is defined as a transition from a low to a high 
voltage. 
 
Setting the interrupt flag will interrupt the processor through IRQA if bit 0 of 
CRA is a 1 as described previously. 
 
CA2 can act as a totally independent interrupt input or as a peripheral 
control output. As an input (CRA, bit 5 = 0) it acts to set the interrupt flag, bit 
6 of CRA, to a logic 1 on the active transition selected by bit 4 of CRA. 
 
These control register bits and interrupt inputs serve the same basic function 
as that described above for CA1. The input signal sets the interrupt flag 
which serves as the link between the peripheral device and the processor 
interrupt structure. The interrupt disable bit allows the processor to exercise 
control over the system interrupts. 
 
In the Output mode (CRA, bit 5 = 1), CA2 can operate independently to 
generate a simple pulse each time the microprocessor reads the data on the 
Peripheral A I/O port. This mode is selected by setting CRA, bit 4 to a "0" 
and CRA, bit 3 to a "1." This pulse output can be used to control the counters, 
shift registers, etc. which make sequential data available on the Peripheral 
input lines. 
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A second output mode allows CA2 to be used in conjunction with CA1 to 
"handshake" between the processor and the peripheral device. On the A side, 
this technique allows positive control of data transfers from the peripheral 
device into the microprocessor. The CA1 input signals the processor that data 
is available by interrupting the processor. The processor reads the data and 
sets CA2 low. This signals the peripheral device that it can make new data 
available. This technique is discussed in detail in Chapter 2. 
 
The final output mode can be selected by setting bit 4 of CRA to a 1. In this 
mode, CA2 is a simple peripheral control output which can be set high or low 
by setting bit 3 of CRA to a 1 or a 0 respectively. 
 
The operation of CA1 and CA2 is summarized in the next section. 
  

1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2) 
 
CB1 operates as an interrupt input only in the same manner as CA1. Bit 7 of 
CRB is set by the active transition selected by bit 0 of CRB. Likewise, the CB2 
input mode operates exactly the same as the CA2 input modes. The CB2 
output modes, CRB, bit 5 = 1, differ somewhat from those of CA2. The pulse 
output occurs when the processor writes data into the Peripheral B Output 
Register. Also, the "handshaking" operates on data transfers from the 
processor into the peripheral device. 
 
The operation of CB1 and CB2 is summarized in the next section. A more 
detailed discussion of handshaking on the Peripheral B I/O port is contained 
in Chapter 2 of this manual. 
 

1.5.5 Summary of MCS6520 Operation 
 

1.5.5.1 Control Register Operation 
 

 7 6 5 4 3 2 1 0 
CRA IRQA1 IRQA2 CA2 CONTROL DDRA 

ACCESS 
CA1 CONTROL } }

 
 7 6 5 4 3 2 1 0 

CRB IRQB1 IRQB2 CB2 CONTROL DDRB 
ACCESS 

CB2 CONTROL } }

 
Control Register Bit Designations 

FIGURE 1.29 
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Control of Interrupt Inputs CA1, CB1 

FIGURE 1.30 
 
 

CRA (CRB) 
Active Transition 
of Input Signal* 

IRQA (IRQB) 
Interrupt Outputs Bit 5 Bit 4 Bit 3 

0 0 0 negative Disable – remain high 

0 0 1 negative 
Enabled – goes low when bit 6 
in CRA (CRB) is set by active 

transition of signal on CA2 (CB2) 

0 1 0 positive Disable – remain high 

0 1 1 positive Enable – As explained above 

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active 
transition of the CA2 (CB2) signal. This is independent of the 
state of Bit 3 in CRA (CRB). 

 
Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = "0") 

FIGURE 1.31a 
 
 
 
 

CRA (CRB) Active Transition 
of Input Signal* 

IRQA (IRQB) 
Interrupt Outputs Bit 1 Bit 0 

0 0 negative Disable – remain high 

0 1 negative 
Enabled – goes low when bit 7 
in CRA (CRB) is set by active 

transition of signal on CA1 (CB1) 

1 0 positive Disable – remain high 

1 1 positive Enable – As explained above 

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active 
transition of the CA1 (CB1) signal. This is independent of the 
state of Bit 0 in CRA (CRB). 
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CRA 

Mode Description Bit 5 Bit 4 Bit 3 

1 0 0 
"Handshake" 
on Read 

CA2 is set high on an active transition of 
the CA1 interrupt input signal and set low 
by a microprocessor "Read A Data" 
operation. This allows positive control of 
data transfers from the peripheral device 
to the microprocessor. 

1 0 1 Pulse Output 

CA2 goes low for one cycle after a 
"Read A Data" operation. This pulse can 
be used to signal the peripheral device 
that data was taken. 

1 1 0 Manual Output CA2 set low 

1 1 1 Manual Output CA2 set high 

 
Control of CA2 Output Modes 

FIGURE 1.31b 
 
 

CRB 

Mode Description Bit 5 Bit 4 Bit 3 

1 0 0 
"Handshake" 
on Write 

CB2 is set low on microprocessor "Write 
B Data" operation and is set high by an 
active transition of the CB1 interrupt input 
signal. This allows positive control of data 
transfers from the microprocessor to the 
peripheral device. 

1 0 1 Pulse Output 

CB2 goes low for one cycle after a 
microprocessor "Write B Data" 
operation. This can be used to signal the 
peripheral device that data is available. 

1 1 0 Manual Output CB2 set low 

1 1 1 Manual Output CB2 set high 

 
Control of CB2 Output Modes 

FIGURE 1.31c 
 
 



 

70 
 

1.5.5.2 MCS6520 Operation in MC6500 Systems 
 
A brief review of the overall operation of the MCS6520 should serve to 
tie together many of the details discussed previously. 
 
During the system initialization routine which is executed in response to 
the processor RESET signal, the microprocessor will write a pattern of 1's 
and 0's into the Data Direction Registers. This will determine those lines 
which are to act as inputs and those which are to act as outputs. 
 
This pattern will usually be fixed for the system operation. Therefore, the 
next step would be to set the various operating modes, active transitions, 
etc. which are controlled by the Control Registers. At the same time the 
Data Direction Register Access Control Bit can be set to a 1 to allow the 
processor to control the Peripheral Ports during system operation. 
 
The interrupts will normally remain disabled until the entire system is 
initialized. At this time, the interrupts are enabled and full system 
operation begins. 
 
During system operation, the microprocessor will interrogate the switches, 
sensors, etc. in the peripheral device by reading the data on the 
Peripheral Input lines. Binary or decimal data may be transferred into 
the microprocessor in the same way. At the same time the various lights, 
motors, solenoids, etc. on the peripheral device are controlled by writing 
data into the appropriate bits of the Peripheral Output Registers. The 
entire sequence of operations is determined by the programmer to 
control a particular peripheral device in a defined manner. The various 
registers, gates, etc. in the Interface Device act primarily as a link 
between the internal processor operations and the various inputs and 
outputs on the peripheral devices being controlled. 
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1.6 PERIPHERAL INTERFACE/MEMORY DEVICE — MCS6530 
 

1.6.1 Introduction 
 
The MCS6530 is designed to operate in conjunction with the MCS650X 
Microprocessor. It is comprised of a mask programmable 1024 x 8 ROM, 
a 64 x 8 RAM, two 8 bit bi-directional ports capable of directly 
interfacing the Microprocessor unit and peripheral devices and a 
programmable interval timer with interrupt, capable of timing in various 
intervals from 1 to 262,144 clock periods. 
 
The I/O configuration, the interval timer and interrupt capability are 
under software control. 
 

 8 bit bi-directional Data Bus for communication with the microprocessor 
unit. 

 Two 8 bit bi-directional ports for direct interface to peripherals.  

 Two I/O Peripheral Data Direction Registers 

 Programmable Interval Timer from 1 to 256 x 1024 clock periods.  

 Programmable Interval Timer Interrupt 

 CMOS Compatible Peripheral Lines 

 Peripheral Pins with Direct Transistor Drive Capability 

 Three-State Data Pins 

 Up to 7K contiguous ROM with no external decoding 

 1024 x 8 ROM 

 64 x 8 Static RAM 
 

1.6.2 Pinout Description 
 
Figure 1.33 is the pinout diagram of the MCS6530. 
 

1.6.2.1 Reset (RES) 
 
During system initialization a Logic "0" on the RES input will cause a 
zeroing of all I/O registers. This in turn will cause all I/O buses to act as 
inputs thus protecting external components from possible damage and 
erroneous data while the system is being configured under software 
control. The Data Bus Buffers are put into an OFF-STATE during Reset. 
Interrupt is disabled when reset. The RES signal must be held low for at 
least one clock period when reset is required. 
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MCS6530 Pinout Designation 
FIGURE 1.32 
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1.6.2.2 Input Clock 

 
The input clock is a system Phase Two clock which can be either a low level clock:  
 
(VIL < 0.4, VIH > 2.4) or high level clock: 
 

1.6.2.3 Read/Write (R/W) 
 
The R/W signal is supplied by the microprocessing unit and is used to control 
the transfer of data to and from the microprocessing unit and the MCS6530. 
A high on the R/W pin allows the processor to read (with proper addressing) 
the data supplied by the MCS6530. A low on the R/W pin allows a write 
(with proper addressing) to the MCS6530. 
 

1.6.2.4 Interrupt Request (IRQ) 
 
The IRQ pin is an interrupt pin from the interval timer. This same pin, if not used 
as an interrupt, can be used as a peripheral I/O pin (PB7). When used as an 
interrupt, the pin should be set up as an input by the data direction register. The 
pin will be normally high with a low indicating an interrupt from the MCS6530. 
An external pull-up device is not required; however, if collector-OR'd with other 
devices, the internal pull-up may be omitted with a mask option. 
  

1.6.2.5 Data Bus (D0–D7) 
 
The MCS6530 has eight bi-directional data pins (D0–D7). These pins connect to 
the system's data lines and allow transfer of data to and from the microprocessor 
unit. The output buffers remain in the off state except when a Read operation 
occurs. 
 

1.6.2.6 Peripheral Data Ports 
 
The MCS6530 has 16 pins available for peripheral I/O operations. Each 
pin is individually software programmable to act as either an input or an 
output. The 16 pins are divided into 2 8-bit ports, PA0–PA7 and PB0–PB7. 
PB5, PB6 and PB7 also have other uses which will be discussed in Section 
1.6.4. The pins are set up as an input by writing a "0" into the corresponding 
bit in the data direction register. A "1" into the data direction register will 
cause its corresponding bit to be an output. When in the input mode, the 
peripheral output buffers are in the "1" state and a pull-up device acts 
as less than one TTL load to the peripheral data lines. On a Read 
operation, the microprocessor unit reads the peripheral pin. When the 
 

(VIL < 0.2, VIH = VCC 
+.3

). 
–.2
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peripheral device gets information from the MCS6530 it receives data 
stored in the data register. The microprocessor will read correct 
information if the peripheral lines are greater than 2.0 volts for a "1" 
and less than 0.8 volts for a "0" as the peripheral pins are all TTL 
compatible. Pins PA0 and PB0 are also capable of sourcing 3mA at 1.5V, 
thus making them capable of Darlington drive. 
 

1.6.2.7 Address Lines (A0–A9) 
 
There are 10 address pins. In addition to these 10, there is the ROM 
SELECT pin. The above pins, A0–A9 and ROM SELECT, are always used 
as addressing pins. There are 2 additional pins which are mask 
programmable and can be used either individually or together as CHIP 
SELECTS. They are pins PB5 and PB6. When used as peripheral data pins 
they cannot be used as chip selects. 
 

1.6.3 Internal Organization 
 
A block diagram of the internal architecture is shown in Figure 1.33. The 
MCS6530 is divided into four basic sections, RAM, ROM, I/O and TIMER. 
The RAM and ROM interface directly with the microprocessor through the 
system data bus and address lines. The I/O section consists of two 8-bit 
halves. Each half contains a Data Direction Register (DDR) and an I/O 
Register. The DDR controls the peripheral output buffers. A "1" written 
into the DDR sets up the corresponding peripheral buffer as an output 
buffer. By this, it is meant that anything then written into the I/O Register 
will appear on that corresponding peripheral pin. A "0" written into the 
DDR inhibits the output buffer from transmitting data from the I/O 
Register. The output buffer remains in the high state making it ready to 
receive data on the peripheral lines. 
 
It should be noted that the microprocessor, when reading the I/O Register, 
is in fact reading the Peripheral Pin and not the I/O Register. The only 
way the I/O Register data can be changed is by a microprocessor Write 
operation. The Register is not affected by the data on the Peripheral Pin. 
 

1.6.3.1 ROM — 1K Byte (8K Bits) 
 
The 8K ROM is in a 1024 x 8 configuration. Address lines A0–A9, as well 
as RS0 are needed to address the entire ROM. With the addition of 
 



 

75 
 

 
 

MCS6530 Internal Architecture 
FIGURE 1.33 
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CS1 and CS2, up to seven MCS6530s may be addressed, giving 7168 x 8 
bits of contiguous ROM. 
 

1.6.3.2 RAM — 64 Bytes (512 Bits) 
 
A 64 x 8 static RAM is contained on the MCS6530. It is addressed by A0–
A5 (Byte Select), RS0, A6, A7, A8, A9 and, depending on the number of 
chips in the system, CS1 and CS2. 
 

1.6.3.3 Internal Peripheral Registers 
 
There are four internal registers, two data direction registers and two 
peripheral I/O data registers. The two data direction registers (A side and 
B side) control the direction of data into and out of the peripheral pins. For 
example, a "1" loaded into data direction register A, position 3 sets up 
peripheral pin PA3 as an output. If a "0" had been loaded instead, PA3 
would be configured as an input. The two data I/O registers are used to 
latch data from the data bus during a Write operation until the peripheral 
device can read the data supplied by the microprocessor unit. Although 
during a Read operation the microprocessor unit reads the peripheral pin, 
the address is the same as the register. For those pins programmed as outputs 
by the data direction registers, the data on the pins will be the same as that 
in the I/O register. 
 

1.6.3.4 Interval Timer 
 
The Timer section of the MCS6530 contains three basic parts: preliminary 
divide down register, programmable 8-bit register and interrupt logic. These 
are illustrated in Figure 1.34. 
 
The interval timer can be programmed to count up to 256 time intervals. Each 
time interval can be either 1T, 8T, 64T or 1024T increments, where T is the 
system clock period. When a full count is reached, an interrupt flag is set to 
a logic "1." After the interrupt flag is set the internal clock begins counting 
down to a maximum of -255T. Thus, after the interrupt flag is set, a Read of 
the timer will tell how long since the flag was set up to a maximum of 255T. 
 
When writing to the timer, the high order 8 bits of the timer are written 
by the system data bus. If a count of 52 time intervals were to be counted, 
00110100 would be written into the timer section. The time intervals of 
1, 8, 64 or 1024T are decoded from address lines A0 and A1 at 
this same time. Address line A3, if high during this write operation, 
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Basic Elements of Interval Timer 
FIGURE 1.34 
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enables the interrupt flag onto pin PB7. PB7 should be programmed as an 
input if it is to be used as an interrupt pin. PB7 goes low when an interrupt 
occurs. When the timer is read prior to the interrupt flag being set, the 
number of time intervals remaining will be read, i.e., 51, 50, 49, etc. 
 
Should the timer be read when interrupt occurs, the value read would be 
11111111. After interrupt, the timer register decrements at a divide by 
"1" rate of the system clock. If after interrupt, the timer is read and a 
value of 11100100 is read, the time since interrupt is 28T. The value 
read is in two's complement. 
 
Value read = 11100100 
Complement  = 00011011 
ADD 1   =  00011100 = 28. 
 
Thus, to arrive at the total elapsed time, merely do a two's complement 
add to the original time written into the timer. Again, assume time written 
as 00110100 (= 52). With a divide by 8, total time to interrupt is (52 x 
8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T, 
assuming the value read after interrupt was 11100100. 
 
After interrupt, whenever the timer is written or read the interrupt is reset. 
However, the reading or writing of the timer at the same time interrupt 
occurs will not reset the interrupt flag. 
 
Figure 1.35 illustrates an example of interrupt. 
 
When reading the timer after an interrupt, A3 should be low so as to 
disable the IRQ pin. This is done so as to avoid future interrupts until after 
another Write timer operation. 
  

1.6.4 Addressing 
 
Addressing of the MCS6530 offers many variations to the user for 
greater flexibility. The user may configure his system with RAM in 
lower memory, ROM in higher memory, and I/O registers with 
interval timers between the extremes. There are 10 address lines 
(A0–A9). In addition, there is the possibility of 3 additional address 
lines to be used as chip-selects and to distinguish between ROM, 
RAM, I/O and interval timer. Two of the additional lines are chip-
selects 1 and 2 (CS1 and CS2). The chip-select pins can also be PB5 
and PB6. Whether the pins are used as chip-selects or peripheral 
I/O pins is a mask option and must be specified when ordering the 
part. Both pins act independently of each other in that either or both 
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SHOULD THE PROGRAMMABLE TIMER REGISTER BE READ AT THE 
TIMES NOTED ON THE DIAGRAM ABOVE, IT WOULD CONTAIN: 
 

1 Data written into interval timer is 001100100 = 52
10

 A divide by 8 pre-scale is used 

2 00011001 = 25
10

  �� −  
���

�
− � = �� − �
 − � = �� 

3 00000000 = 0
10

            �� −  
���

�
− � = �� − �� − � = � 

4 Interrupt has occurred at Φ2 pulse #416 

5 10101100 Two; complement = 01010100 = 84
10101010

   84 + (52×8) = 500
10101010

 

 
 

Example of Interrupt Generated by Interval Timer 
FIGURE 1.35 
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pins may be designated as a chip-select. The third additional address 
line is RS0. The MCS6502 and MCS6530 in a 2-chip system would use 
RS0 to distinguish between ROM and non-ROM sections of the MCS6530. 
With the addressing pins available, a total of 7K contiguous ROM may 
be addressed with no external decode. Below is an example of a 1-chip 
and a 7-chip MCS6530 Addressing Scheme. 
 

1.6.4.1 One-Chip Addressing 
 
Figure 1.36 illustrates a 1-chip system decode for the MCS6530. 
 

1.6.4.2 Seven-Chip Addressing 
 
In the 7-chip system the objective would be to have 7K of contiguous 
ROM, with RAM in low order memory. The 7K of ROM could be placed 
between addresses 65,536 and 1024. For this case, assume A13, A14 
and A15 are all 1 when addressing ROM, and 0 when addressing RAM 
or I/O. This would place the 7K ROM between Addresses 65,535 and 
57,367. The 2 pins designated as chip-select or I/O would be masked 
programmed as chip-select pins. Pin RS0 would be connected to address 
line A10. Pins CS1 and CS2 would be connected to address lines A11 
and A12 respectively. See Figure 1.37. 
 
The two examples shown would allow addressing of the ROM and RAM; 
however, once the I/O timer has been addressed, further decoding is 
necessary to select which of the I/O registers are desired, as well as the 
coding of the interval timer. 
 

1.6.4.3 I/O Register — Timer Addressing 
 
Figure 1.38 illustrates the addressing decoding for the internal elements 
and timer programming. Address line A2 distinguishes I/O registers from 
the timer. When A2 is low and I/O timer select is high, the I/O registers 
are addressed. Once the I/O registers are addressed, address lines A1 
and A0 decode the desired register. 
 
When the timer is selected A1 and A0 decode the divide by matrix. This 
is discussed further in the Timer Section. In addition, Address A3 is used 
to enable the interrupt flag to PB7. 
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A. X indicates mask programming 
i.e.   ROM select = CS1•RS0 
       RAM select = CS1•RS0•A9•A7•A6 
       I/O TIMER SELECT = CS1•RS0•A9•A8•A7•A6 

B. Notice that A8 is a don't care for RAM select 
C. CS2 can be used as PB5 in this example. 

 
 

MCS6530 One Chip Address Encoding Diagram 
FIGURE 1.36 
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The addressing of the ROM select, RAM select and I/O Timer select lines 
would be as follows: 
 

  
CS2 
A12 

CS1 
A11 

RS0 
A10 A9 A8 A7 A6 

MCS6530 #1, ROM SELECT 0 0 1 X X X X 

 RAM SELECT 0 0 0 0 0 0 0 

 I/O TIMER 0 0 0 1 0 0 0 

MCS6530 #2, ROM SELECT 0 1 0 X X X X 

 RAM SELECT 0 0 0 0 0 0 1 

 I/O TIMER 0 0 0 1 0 0 1 

MCS6530 #3, ROM SELECT 0 1 1 X X X X 

 RAM SELECT 0 0 0 0 0 1 0 

 I/O TIMER 0 0 0 1 0 1 0 

MCS6530 #4, ROM SELECT 1 0 0 X X X X 

 RAM SELECT 0 0 0 0 0 1 1 

 I/O TIMER 0 0 0 1 0 1 1 

MCS6530 #5, ROM SELECT 1 0 1 X X X X 

 RAM SELECT 0 0 0 0 1 0 0 

 I/O TIMER 0 0 0 1 1 0 0 

MCS6530 #6, ROM SELECT 1 1 0 X X X X 

 RAM SELECT 0 0 0 0 1 0 1 

 I/O TIMER 0 0 0 1 1 0 1 

MCS6530 #7, ROM SELECT 1 1 1 X X X X 

 RAM SELECT 0 0 0 0 1 1 0 

 I/O TIMER 0 0 0 1 1 1 0 

*RAM select for MCS6530 #5 would read = A12•A11•A10•A9•A8•A7•A6 

 
MCS6530 Seven Chip Addressing Scheme 

FIGURE 1.37 
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CHAPTER 2 

 
CONFIGURING THE MICROCOMPUTER SYSTEM 

 

2.1 THE SYSTEM CONFIGURATION TASK 

 
The first part of any microprocessor-based design effort is the system 
configuration task. In fact, this probably requires more creativity from the 
designer than any other part of the design effort. The goal of the system 
configuration effort is the generation of a list of components which will 
make up the system, a detailed interconnect diagram and a detailed 
description of the total system operation. This includes a definition of how 
the processor will control the peripheral devices as well as a definition of 
the internal operations to be performed. This does not include detailed 
implementation of the design such as laying out printed circuit boards and 
writing programs, but does involve enough analysis of the total operation 
to assure that the system will operate properly after all the hardware 
and software is assembled. 
 
The technically based selection of components and the definition of the 
general operation of the system must be based on consideration of two 
factors. These are: 
 

1. System speed requirements 
2. System input/output requirements 

 
Both of these factors are interrelated. Therefore, it will usually be 
necessary to define an I/O configuration and then verify that the 
processor can operate at the speed required by the peripheral devices. 
If there appears to be any difficulty with the I/O operation, this structure 
must be re-defined and re-analyzed. 
 
In addition to the speed requirements of the I/O devices, there are also 
general speed requirements for the internal processor operations 
(arithmetic operations, data manipulation, etc.). This speed requirement is 
usually somewhat more flexible than that associated with I/O but it should 
be defined along with any other system requirements. The ultimate test 
of system speed must wait for the generation of both the hardware and 
the program; however, the system requirements and capability must be 
analyzed very early in the system development process to assure that no 
problems will arise during the last stages of the design. 
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2.2 INPUT/OUTPUT TECHNIQUES 
 

2.2.1 The General Purpose Input/Output (I/O) Port 
 
Although the concept of the I/O port was introduced briefly in Section 
1, and the operation of two MCS6500 family devices which provide 
general purpose I/O capability has been discussed in Sections 1.5 and 
1.6, little has been said about what factors must be considered when 
configuring an I/O structure using these devices. 
 
The general purpose I/O port consists of eight lines, each of which can 
act as either an input or an output. As an input, each line can detect the 
state of one switch or can detect one bit of data. As an output, each 
line can control one light, solenoid, etc. or can provide one bit of data 
to a peripheral device. If this technique is used in peripheral control, the 
operation of each line is totally defined in the system program. 
 
For most systems, the general purpose interface device provides more 
than adequate speed and flexibility to solve the entire peripheral 
interface problem. Usually, a cost savings can be realized because of 
the reduced component cost and the necessity of stocking only one type 
of interface device. In addition, use of the general purpose peripheral 
interface device allows the designer to tailor the operation of the 
interface device to fit the problem at hand. 
 
The ultimate component selection must be preceded by a study of each 
section of the system input/output structure and a study of the overall 
system performance. Ultimately, the set of general purpose and special 
purpose peripheral interface devices selected for a system must be 
chosen to minimize total cost while assuring satisfactory system 
performance. 
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Processor speed is a function of two things. The first is simply the number 
of instructions required to perform the desired operations. The second 
is the percentage of processor time required to service interrupts. The 
typical system may employ several interrupt signals which occur at fixed 
intervals. At times, these may be combined with other interrupts being 
generated by a peripheral device. It is important that the total service 
time for these interrupts does not exceed that allowable and that the 
time available to the processor for executing the main program is 
sufficient to allow the system to operate at its required speed. 
 
During the system configuration process, detailed system programs 
need not be generated. However, it will be necessary to write small 
portions of the software to verify the speed of execution and to assure 
proper operation of the total system. 
 
This chapter will discuss special techniques for the control of the various 
components which may be included in a microcomputer system, as well 
as techniques for controlling peripheral devices which are attached to 
the system. A discussion of programming techniques which can be used 
to optimize the total system performance is contained in the 
Programming Manual. 
 

2.2.2 The Special Purpose Peripheral Interface Device 

 
The special purpose, dedicated I/O device must also be considered in 
any microcomputer design. These devices are designed to completely 
handle a single well-defined problem; for example, driving a particular 
printer, handling a particular type of communications line or driving a 
scanned display. These special purpose devices are designed to totally 
handle their particular task with very little help from the processor. 
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The primary advantage of this type of interface device is that it requires 
an absolute minimum amount of attention from the processor. The major 
disadvantage of special purpose I/O is increased component cost. The 
total production volume for these devices is less than that of the more 
universal I/O chips and also the total chip size is usually greater. 
 
The use of special purpose peripheral control devices will not be 
discussed in this manual. Instead, a detailed study will be made of the 
more general problem of configuring the 8-bit bi-directional peripheral 
port. In addition, this chapter will cover some special techniques which 
can greatly enhance the power of this type of interface device. 
 

2.2.3 Configuring the General Purpose I/O Port 
 
The 8-bit peripheral control port included on the MCS6520 and the 
MCS6530 allows each line to be programmed to act as an input or an 
output. This is accomplished when the processor writes a pattern of 1's 
and 0's into the data direction register. Writing a 1 causes the pin to 
become an output, and writing a 0 causes it to act as an input. Although 
this operation is normally performed only during system initialization, 
the ability to do so under program control allows some very important 
peripheral control techniques. An example of this is described below. 
 
The process of configuring the general purpose I/O port involves first 
examining the peripheral devices to analyze the various control inputs, 
switches, sensors, data signals, etc. which must be handled by the 
microprocessor to properly control the device. Each function must then 
be assigned to a line on the I/O port. The ultimate goal of this process 
is the creation of a list of I/O pins, the function of each pin, and an 
indication of whether each pin is to be an input or an output. 
 
Since each line is capable of operating as an input or an output, and 
since there is very little to differentiate one line from any other, the 
actual assignment can be made fairly late in the system development 
cycle after consideration of software techniques and printed circuit 
board layout. In fact, software considerations may be the only thing 
which dictates that a signal be connected to one pin or another. 
 
Developing a thorough understanding of the software in the MCS6500 
systems will require a detail study of the Programming Manual. 
However, several operations which can be performed by the processor 
and which affect the assignment of inputs and outputs will be discussed 
briefly here. 
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2.2.3.1 Assignment of Outputs 
 
A major factor in the assignment of output pins can be the ability of the 
MCS650X processor to increment and decrement memory. Since the I/O 
port is treated as a location in memory, this incrementing and 
decrementing can be used to rapidly set and clear the low order bit in 
this memory location. This is illustrated in Figure 2.1. 
 
Note that this does not affect anything but the low order bit if it is used 
properly as shown. This operation can be performed more rapidly than 
several other software techniques which can be used to affect a single 
bit. Therefore, control of a single indicator, data line, etc. can be 
greatly enhanced by putting it on the low order bit of an I/O port. This 
is the reason the low order bit of both the MCS6530 peripheral ports 
(PA0 and PB0) provide the ability to drive transistors directly. In many 
applications, a simple transistor attached to one of those pins would 
provide very convenient control of a motor, lamp, etc. 
  
The ability of the microprocessor to shift data in memory can be another 
very important factor in the assignment of outputs. Operations which 
require sequential strobe signals can be controlled conveniently by 
shifting a single high (or low) signal from pin to pin under software 
control. The specific choice of pins can greatly enhance the ease with 
which this signal is controlled. 
 

2.2.3.2 Assignment of Inputs 
 
In general, the processor deals with the input data from switches, 
keyboards, etc. by reading the data on the I/O port into the internal 
registers of the processor (usually the accumulator) and using the resulting 
condition of flags in the Processor Status Register to control the program 
which is executed. During this transfer process, the N flag in the Processor 
Status Register is set equal to the high order bit (bit 7) of the word read 
from the I/O port. This N flag can then be used to cause the processor to 
execute different sections of the program (See the Programming Manual, 
Chapter 4, for a detailed discussion of Branching). Likewise, by 
performing certain instructions, the V flag in the Processor Status Register 
can be set equal to bit 6 on the I/O port. This flag can then be used to 
affect the program which is executed. 
 
This operation of setting the internal flags from bits 6 and 7 of the 
memory word means that making these two lines inputs on an I/O port 
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Control of Low Order Bit of MCS6520 Output Register 
FIGURE 2.1 
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will allow very convenient testing of the condition of the switches, 
sensors, etc. attached to these inputs. If more than two input signals are 
to be attached to a port, the additional inputs should be placed on bit 
5, then bit 4 and so on. The processor can then perform operations which 
shift the lower order bits into bit 7 one at a time and sets the N flag 
equal to this bit. After each shift the N flag can be used to determine 
the actual program which is to be executed. (See the Programming 
Manual for a discussion of the Shift instructions.) 
 
From the above example, one should conclude that the assignments 
which the designer makes will be very much a function of the software 
techniques which will be employed in controlling each line. It is very 
important that the designer be familiar with these techniques and that 
he document the techniques which he has in mind when making the 
assignments. This is particularly important when the system program is 
to be written by someone else. Also, it is important that those doing the 
system development work constantly review the I/O structure to 
optimize the software involved as the system program is written. 
 

2.2.4 Power-On Considerations 
 
Chapter 1, Section 1.3.3 discusses the operation of the system RESET 
function. Reference is made to the fact that this can be used to assure 
that all I/O lines come up in a known state when power is applied to 
the chip. Although this is a very important function, the designer must 
assure himself that this RESET state does not adversely affect the 
peripheral devices. This section describes some of the problems which 
can be encountered when the system is reset and discusses several 
techniques which can be used to assure smooth power-up operation. 
 
The I/O lines of the MCS6530 and MCS6520 all enter the input state 
when the reset line goes to GND (< 0.4V). For the MCS6530 I/O lines, 
and for the Peripheral A port on the MCS6520, these pins will go to 
+5V DC (Vdd). This is due to the output structure on these pins. When 
these lines are in the input state, the output switch becomes an open 
circuit but the pull-up device continues to supply current to the pin. 
 
Figure 2.2 shows a peripheral port which is configured to drive two 
solenoids. These solenoids can be controlled properly after the system is 
initialized; however, when the manual reset switch is activated, both I/O 
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MCS6520 Control of Transistor Driven Solenoids 
FIGURE 2.2 
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lines enter the input state, the transistors saturate (close) and the 
solenoids are activated. This can be catastrophic in most mechanical 
subsystems, so it is important that this potential condition be understood 
and prevented. Figure 2.3 shows two satisfactory solutions to this 
problem. The first, Figure 2.3a, requires that a "0" be written into the 
output line by the processor to actuate the solenoids. This assures that 
the solenoids will not be powered simultaneously when the manual reset 
switch is pressed. However, it does introduce another potential problem. 
When the reset line on the peripheral interface device goes low (< 
0.4V), the contents of both the Peripheral Data register and the Data 
Direction register are cleared to zeros. If the Data Direction register is 
set to 1's, both solenoids will immediately actuate due to the 0 stored 
in the Peripheral Data register. This can be avoided completely if the 
system software first sets the bits in the Peripheral Data register to a 1 
and then sets the Data Direction register to a 1. The I/O pin will go high 
when the reset switch is actuated and will simply stay high through the 
initialization routine. 
 
Figure 2.3b illustrates a solution which may be more applicable to a 
large system or a complex peripheral. In this approach, a separate 
output line is used to apply power to the peripheral device. The power 
to the entire peripheral or to just the critical elements is kept off until 
the entire system is initialized and is ready to run the system program. 
 
On the MCS6520 Peripheral B port, the I/O lines are open circuit (high 
impedance) in the input state. As a result, the configuration in Figure 2.2 
will not cause the same problem on the MCS6520 Peripheral B port as 
would be expected on the MCS6530. In the input state, the I/O pin is 
incapable of sourcing any more than a few microamps. 
 
However, if one were to use a solenoid driver as shown in Figure 2.4, 
the TTL input structure on the drivers would interpret the high-impedance 
state as a logic 1 and would actuate the solenoids. Both the solutions in 
Figure 2.3 would be satisfactory in this case. However, the transistors 
are connected to the TTL buffer. In addition, the extra output shown in 
Figure 2.3b, controlling power to the peripheral device, could actually 
be used to enable the solenoid drivers if an enable input is available 
to these devices. This configuration is illustrated in Figure 2.5. 
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MCS6520 Controlling Solenoids with Enable Signal and TTL Interface 
FIGURE 2.5 

 

2.2.5 Handshaking 
 
The MCS6520 provides both interrupt control and data transfer control 
capability. The technique for controlling the transfer of data between the 
processor and a peripheral device is referred to as handshaking. In this 
procedure, each device (the processor or peripheral) is capable of 
signalling the other that its operation is complete. The sequence differs 
somewhat for transfers into or out of the processor, so they will be 
discussed separately below. 
 

2.2.5.1 Handshaking on Data Transfers from the Processor 
 
The transfer of data out of the processor into a peripheral device is 
performed by first writing the data into the data register within the 
MCS6520. This data then appears on the peripheral output lines where 
it can be read by the peripheral device for storage, display, etc. 
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Control of this data transfer by handshaking requires first that the 
processor signals the peripheral device that data is available on the I/O 
port. The peripheral device then reads this data and signals to the 
processor that the data has been taken and that new data can be made 
available. The processor then makes new data available and the cycle is 
repeated. 
 
As described in Chapter 1, the Peripheral B Interface Port on the 
MCS6520 is designed to perform handshaking on WRITE operations. The 
CB2 peripheral control line can be programmed to act as an output which 
goes low each time the processor writes data onto the Peripheral B 
I/O port. This is the signal which is used to tell the peripheral device that 
data is available on these output lines. 
 
The CB2 output line will stay low until the peripheral device signals the 
processor that the data is taken. This is accomplished by interrupting the 
processor through the CB1 interrupt input. 
 
The sequence which takes place during the "WRITE" handshaking 
operation described above is shown in Figure 2.6. 
 

2.2.5.2 Handshaking on Data Transfers into the Processor 
 
The Peripheral A I/O port on the MCS6520 is designed to handshake on 
data transfers from the peripheral device into the processor. In this 
sequence, the peripheral device must signal the processor that data is 
available and the processor must signal back that data was taken. This is 
basically the same sequence as that performed in the previous operation. 
The CA1 interrupt input is used to interrupt the processor to indicate that 
there is data available on the Peripheral A I/O port. The peripheral 
device must then hold that data there until the processor reads it into its 
internal registers. When the processor reads the Peripheral A I/O port, 
the CA2 peripheral control line goes low to signal to the peripheral 
device that the data has been taken and new data can be made 
available. This entire sequence is shown in Figure 2.7. 
 
The handshaking operations described above can be an extremely 
powerful technique for interfacing data storage devices or, in general, 
any device which must transfer blocks of data and which has a variable 
response time. If the processor cannot predict the speed with which the 
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peripheral takes data, for instance, it must rely on the peripheral to signal 
that it has done so. 
 
Initiating the data transfer sequence is usually accomplished through a 
set of I/O lines separate from the port which is transferring the data. 
However, once the sequence is under way, the processor must deal with 
the peripheral device only when an interrupt has occurred. This allows the 
processor to execute the primary system program while still servicing 
these peripheral devices. 
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1. Processor puts out address of peripheral device and changes 
R/W signal to write enable (low). 

2. During phase two processor puts out data on Data Bus. 
3. Data from the processor is accepted by the MCS6520 on the 

falling edge of the enable clock. 
4. Peripheral Interface device now begins the handshake by 

signaling the peripheral device that data is available to read on 
the output port. 

5. When the external peripheral device reads the data on the 
output port it will respond by a change in CB1. 

6. This change in CB1 is followed by a positive transition of CB2 
signalling the processor that data was accepted. 

 

Write Handshake Sequence 
FIGURE 2.6 
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1. New Data is put out by peripheral device. 
2. The peripheral interface device is signaled by CA1 that the new 

data is ready to be read at the input port. 
3. CA2 is put in the high state. 
4. The processor is signalled that new data is ready to be read by 

a low level on the IRQ line. 
5. The processor begins servicing the Interrupt request and during 

routine the processor will put out the read signal and the Address 
of the Peripheral Interface device. 

6. The Peripheral interface will transfer the new data from the 
peripheral device to the microprocessor through the data bus. 

7. When Data has been transferred the peripheral device will be 
signaled by CA2 going low. 

 
Read Handshake Sequence 

FIGURE 2.7 
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2.3 CONFIGURING THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE 

      SUPPORT CHIPS. 
 
The system block diagram (Figure 2.8) shows the basic data paths which 
allow the MCS6500 system to operate. Data Bus, Address Bus, R/W 
signal, etc. are shown as simple connections between the various chips in 
the system. Although these data paths will exist in any system, no matter 
how complex, each element of the microprocessor interface must be 
examined to assure that each chip is properly driven with signals which 
meet all specifications for the device, to assure that the inter-chip timing 
is proper and to assure that the overall system is operating as required. 
 

2.3.1 Assignment of Addresses in the MCS6500 System 
 
The only method which the microprocessor has for selecting between the 
various RAMs, ROMs, etc. in a system is through the address output lines. 
For this reason, the designer must use these lines very carefully to achieve 
minimum system cost and to assure satisfactory system performance. 
 
Before looking at how the address lines can be configured to minimize 
total system cost or program execution time, the designer should 
understand how the binary value associated with each address line is 
related to the total address space available to the microprocessor and 
how the AND function of various address lines can be used to select large 
blocks of addresses. Figure 2.9 illustrates the state of the three high-order 
address lines for the entire address space available to the MCS650X. 
Note that the highest order address line is a logic 1 for exactly half of 
the available address. The AND function of the two highest order address 
lines is a logic 1 for one-fourth of the available addresses, and so forth. 
Figure 2.9 also illustrates several AND functions derived from the three 
highest order address lines. Each is true for a different block of the 
available addresses. 
 
Generation of the AND function of various high order address lines is 
extremely important because of the chip select techniques employed on the 
processor support chips. As described in Chapter 1, Section 1.5.2.4, the 
MCS6520 has three chip-select lines. The entire chip is selected for reading 
or writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low 
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Organization of Microcomputer System 
FIGURE 2.8 
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Example of "AND" Function Using High Order Address Lines 
FIGURE 2.9 
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(< 0.4V). Selection of the address lines which enable the various chips in the 
system is a very basic but very important part of the system configuration task. 
 
It is important to note here that very few microprocessor-based systems 
actually require that the processors be able to access a full 65,536 words. In 
fact, most systems can be programmed in less than 2,000 words for program 
and data memory. The full address space is made available primarily because 
it allows the configuration of systems with an absolute minimum of separate 
decoding chips between the processor and the support chips. It is possible to 
assign any block of address to each type of chip (RAM, ROM, peripheral 
interface chips, etc.) in the system. However, each of the assigned addresses 
must be mutually exclusive. Only one of the support chips should be selected 
for every address used in the system program. 
 

2.3.1.1 ROM Address Assignment 
 
The assignment of ROM addresses is dictated by the fact that the interrupt and 
RESET vectors must be located in the 6 high-order words in memory. These are 
fixed vectors and must be stored permanently in these locations. For this 
reason, the program memory (usually ROM) is usually assigned the high order 
addresses. In fact, the recommended procedure is to use A15 (A12 for 
MCS6504 and A11 for MCS6503 and MCS6505) to select program ROM. 
 

2.3.1.2 RAM Address Assignment 
 
There are several factors which determine the location of the RAM in an 
MCS650X-based system. Data stored in memory under control of the internal 
processor Stack Pointer will always go into Page One (ADH = 01). Also, the 
entire set of Page Zero addressing modes relies on there being data storage 
RAM in Page Zero. For this reason, the RAM in a MCS650X-based system 
should be placed in the low order addresses in memory. 
 
With the RAM in low order memory and the ROM in high order memory, the 
peripheral interface devices must go somewhere in between. This is 
accomplished in Figure 2.10 by using A15 • A14 to select ROMs, A15 to select 
RAM, and A15 • A14 to select all peripheral interface devices. This allows 
differentiation between the types of support chips. The addressing structure 
can be completed by allowing for selection of each chip in the groups. 
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Typical Address Assignments 
FIGURE 2.10 
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The addresses which select the various registers, peripheral ports, etc. 
within the peripheral interface devices normally used will not be 
sequential. For this reason, it is normally recommended that the 
technique shown in Figure 2.10 be used to differentiate between the 
peripheral interface chips. This allows selection of 12 devices with no 
decoding in a MCS6501 or MCS6502-based system, up to nine 
MCS6520 devices in a MCS6504-based system, and up to eight 
devices in a MCS6503 and MCS6505-based system. 
 

2.3.2 Additional Address Assignment Techniques 
 
In many systems, the techniques illustrated above may not represent 
the best solution to the system problem. This is particularly true if 
program execution speed is a primary consideration. The time 
required to access the peripheral devices can be reduced by putting 
these devices in Page Zero. The entire set of Page Zero addressing 
modes can then be used to access these devices. In addition, the 
polling of the MCS6520 control registers during interrupt servicing can 
be facilitated greatly by putting the control registers in sequential 
addresses. These registers can then be accessed using the Page Zero, 
Indexed addressing mode described in the Programming Manual. The 
address interconnect which allows this is shown in Figure 2.11. Note 
that this implementation requires external address decoding chips but 
for the system requiring it, this incremental cost will result in higher 
operating speeds. 
 
The system designer must become familiar with the addressing lines 
and their effect on the address space available to the processor. Even 
more important, there is a significant relationship between software 
and hardware in microprocessor systems and a full understanding of 
both can allow optimization of the trade-off between speed and cost 
for the system under design. 
 

2.3.3 Interrupts 
 
The basic concept of interrupts is introduced in Chapter 1, Section 1.3.2 
of this manual. However, little is said there about the hardware and 
software techniques which are required to assure proper implementation of 
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Page Zero Chip Select Addressing Scheme 
FIGURE 2.11 
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the interrupt system. This section is designed to introduce the designer to 
the details of interrupts and interrupt servicing techniques. 
 

2.3.3.1 Interrupt Prioritizing 
 
Chapter 1 makes reference to various techniques for hardware 
prioritizing of interrupts to allow more rapid servicing of interrupts. The 
goal of this hardware is to allow the processor to go directly to the 
program which services the highest priority active interrupt without taking 
the time to poll each interrupting device. 
 
All hardware prioritizing techniques are based on the "priority encoder" 
shown in Figure 2.12. This device has eight inputs which are assigned a 
priority level from one to eight and generates a three-bit binary code 
corresponding to the highest priority active input signal. 
 
The generation of this three-bit code is in reality a trivial task for the 
designer. However, relating this code to the address of the corresponding 
interrupt service routine is much more difficult and represents an 
opportunity for creativity on the part of the designer. Several solutions 
will be illustrated here to demonstrate what can be done. These are 
certainly not assumed to be the only solutions. Each system must be 
considered separately to assure that the implementation chosen is as close 
to optimum as possible. 
 

2.3.3.2 Example 1: Selecting the Interrupt Vector 

 
The final step of interrupt response within the processor is the fetching of 
an interrupt vector from two fixed addresses in memory. The interrupt 
vector located in these fixed addresses identifies the address of the 
software which the processor executes to poll the interrupting devices. 
Instead of pointing to the polling routine, it would be much faster to go 
directly to the software which actually services the interrupt. This requires 
a unique vector for each interrupt. 
 
The technique illustrated in Figure 2.12 assumes that the interrupt vectors 
are located in ROM at addresses below that normally assigned to the 
interrupt vector. The decoder detects the fact that the processor is 
reading FFFE or FFFF. At this time the address inputs AD1, AD2 and AD3 
into the ROM are driven from the priority encoder. Instead of accessing 
FFFE or FFFF, the interrupt vector will come from two addresses selected by 
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Selecting the Interrupt Vector 
FIGURE 2.12 
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the priority encoder. The actual hardware involved is quite simple and 
the interrupt response time is an absolute minimum. 
 

2.3.3.3 Example 2: Using the Processor Software Power 
 
These several solutions to the vectored interrupt problem take advantage of 
certain instructions which can be performed by the processor. The first of 
these uses an instruction called the Jump Indirect. This instruction causes the 
processor to begin executing the program located at that address contained 
in two sequential memory locations. 
 
As in Example 1, the three-bit output from the priority encoder becomes part 
of the address of the interrupt software. If the output of the priority encoder 
is connected to the inputs of a peripheral interface device, the processor can 
then perform a Jump Indirect operation using the address on the two 
peripheral I/O ports. This is shown in Figure 2.13. 
 
Another solution which takes advantage of the processor software is shown 
in Figure 2.14. Once again the output of the priority encoder is connected to 
the inputs of a peripheral I/O port. However, in this approach, the priority 
encoder is connected to the low order bits and the other bits can be used as 
control or input lines for other functions. 
 
In this method, the three bits from the priority encoder will become part of 
an address established in memory. This address will then be used in a Jump 
Indirect instruction as before. This operation is detailed in Figure 2.15. 
 

2.3.4 The Application of RDY to Controlling the Memory Interface 
 
The ability to stop the microprocessor can be extremely important when using 
memory devices which are not directly compatible with the MCS650X family. 
 
The RDY line on the MCS6501, MCS6502 and MCS6505 can be used to 
stop the processor in any "non write" cycle, i.e., any cycle in which the 
processor is not attempting to write data into memory. The processor can be 
stopped for any number of clock cycles, from one cycle for interfacing with 
slow memories to many cycles for DMA applications and for single cycle 
execution. 
 

2.3.4.1 Interfacing Slow PROMs 
 
One of the principal applications of RDY is in the control of light-erasable 
PROMs or EAROMs. These devices generally have longer access 
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Using MCS6520 for Jump Indirect Interrupt Routines 
FIGURE 2.13 
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Priority Encoder Connected to Low Order Bits of MCS6520 
FIGURE 2.14a 
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Priority Encoder to Peripheral Interface Scheme 
FIGURE 2.14b 

 
 
 
INTVEC PHA  Receive Interrupt Vector 

 TXA   

 PHA   

 LDA IPA A0 Read PIA Port 

 AND #0E Clear PIA 

 TAX  Transfer Acc. to X index reg. 

 LDA VEC TAB,X Load Acc. from Interrupt Vector Table 
stored in memory 

 STA JMP1 Set Low Order Address Byte of Interrupt 
Vector 

 INX  Increment X Index Register 

 LDA VEC TAB,X Load Acc. from Interrupt Vector Table 

 STA JMP1+1 Set high order Address Byte of Interrupt 
Vector 

 JMP (JMP1) Go to Interrupt Service Software 

 
 
Software Program to Implement Interrupt from above Hardware Configuration 

FIGURE 2.15 
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times than that required by the microprocessor when operation at 1MHz 
clock frequency and are incapable of making data available on the data 
bus within 100 nanoseconds of the end of the Phase Two clock pulse. The 
Phase Two clock pulse is used to latch data or instructions on the data 
bus; therefore, if the data is not available at the correct time, the 
processor must be held up for one full cycle. The instruction will then be 
latched on the following Phase Two pulse. Execution of the instruction will 
then proceed during the next cycle. Suggested logic for performing this 
function is shown in Figure 2.16. 
 
Note that the data present on the data bus during the Φ2 clock pulse 
after RDY goes high is the data that will be used in the instruction 
execution which takes place during the following cycle. 
 

2.3.4.2 Direct Memory Address (DMA) Techniques 
 
Transfer of data from peripheral storage devices into the microcomputer 
data memory (RAM) can normally be handled one byte at a time under 
control of the microprocessor. However, in large data terminals, control 
systems, etc. the primary data storage device may be a high-speed tape 
or disk. In systems such as these, the data transfer from the storage device 
into memory must be performed at speeds greater than the processor 
can handle. The control of the transfer must be performed outside of the 
processor in a separate controller and the peripheral device must gain 
direct access to the system RAM. 
 
Direct Memory Access requires primarily that the processor have no need 
to access the memory involved. This is generally assured by stopping the 
processor completely. The DMA controller must then gain access to the 
R/W line and both the address and data busses on the memory unit. 
 
Provision for stopping the processor is available on the MCS6501, 
MCS6502 and MCS6505. This is accomplished by pulling the RDY line on 
the processor to GND (< 0.4V). The processor will stop in the first non-
write cycle with the data bus in the high-impedance state. After the 
processor has stopped, the DMA controller must provide the address and 
data for the memory and must control R/W if data is being transferred 
into memory. 
 
Providing addresses for the memories can be accomplished by gating 
addresses from either the DMA controller or the microprocessor into the 
memories. This can be accomplished very easily with a Quad 2-input data 



 

113 
 

selector. During the DMA operation, the addresses fed to the memories are 
those generated by the DMA controller. After the DMA operation is 
complete, the input select signal to the data selector is inverted and the 
addresses generated by the processor once again determine which memory 
word is being accessed. The R/W line to the memories can be controlled in 
the same way as the address lines. 
 
The data bus must be controlled in a somewhat different manner. This is 
necessitated by the fact that these lines are "bi-directional"; the data bus 
pins on the processor and the support chips act as both an input and an 
output. The output buffers in each of these chips are capable of entering a 
high impedance state to allow any of the devices to drive the bus during 
data and instruction transfers. For this reason, a bi-directional, "three-state" 
bus extender is required to interface the DMA controller to the system data 
bus. The logic necessary to provide full address bus and data bus control for 
DMA applications is shown in Figure 2.17. 
 
The MCS6501 provides a Bus Available output to signal the DMA controller 
that the processor has stopped and that the DMA controller can proceed to 
access memory for reading and writing data. This signal will go high during 
the Phase Two clock in the first Read cycle (R/W = 1) which follows RDY 
going low. This will occur immediately if RDY is pulled to GND (< 0.4V) 
during a Read cycle. The discussion of the processors in Section 1 describes 
this in detail. 
 
The MCS6502, MCS6503, MCS6504 and MCS6505 do not make available 
the Bus Available signal. However, these processors still stop in the first non-
write cycle. For this reason, the logic shown in Figure 2.17 should be used to 
generate a Bus Available signal for the DMA controller. 
 

2.3.4.3 Control of Dynamic RAMs in the MCS6500 System 
 
For systems which must contain a large quantity of Read/Write memory 
(RAM), the 4096-bit dynamic RAMs can provide the required storage with 
a minimum number of parts. Currently available dynamic RAMs are 
capable of storing four times as much data as similar static devices. 
However, there is one major drawback to these devices — they must be 
refreshed periodically. For most devices currently available, this refresh 
period is about 2 milliseconds for the entire chip. Refreshing the entire chip 
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Interfacing Scheme for Slow PROM's 
FIGURE 2.16 

 
 
 

 
 
 

Logic Used to Generate Bus Available Signal for DMA Applications 
FIGURE 2.17 
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requires 32 Read operations which can be performed all at once every 
2 milliseconds, or 1 approximately every 64 microseconds. 
 
Unless a separate controller is used to perform this refresh operation, the 
use of dynamic memories can be very detrimental to system performance. 
 
As with any Direct Memory Access, the processor must be stopped to 
assure that the processor and the DMA controller are not attempting to 
access the memories concurrently. The RDY input provides this capability. 
A counter operating directly from the system clock will provide a very 
convenient refresh signal. Each time the counter goes through a count of 
63, a "refresh request" pulse is generated. The actual memory refresh 
operation must take place during a Read operation with the processor 
stopped for 1 cycle. Determining when the processor has stopped is 
exactly the same problem as in DMA operations. The MCS6501 will 
generate a Bus Available pulse when the processor has stopped. In the 
other processors, the controller must pull the RDY line low and must then 
examine the R/W line to determine when the processor is in a Read cycle. 
 
The specific operation performed during the refresh cycle is a function of 
the devices being used. However, it should be noted the time available 
for refreshing the memory is "N - ½" cycles, where N is the number of 
cycles that the processor is stopped. This formula is based on the fact that 

the first half cycle is lost due to the fact that BA does not go high until Φ2 

in the MCS6501 and that the state of the R/W line cannot be considered 

valid until Φ2. Control of the memory address lines must be returned to 

the processor at the beginning of Φ1 if the memories are to have a full 

cycle to make valid data available on the data bus. This leaves one-half 
cycle available to perform the refresh operation if the processor is 
stopped for one cycle. A full 1-½ cycles can be made available by 
stopping the processor for two cycles. This latter implementation is more 
compatible with most dynamic RAMs currently available. 
 
As described above, a primary problem in the implementation of dynamic 
RAM systems is knowing when the processor has stopped. A full one-half 
cycle is required in the implementations described above. The MCS6502, 
however, provides a signal which can be used to predict that the processor 
will stop in the very next cycle. This is the SYNC signal. It is impossible 
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for a Write operation to immediately follow an instruction fetch cycle. 
This allows the memory refresh controller to assume control of the address 
lines at the beginning of that cycle instead of after the trailing edge of 

Φ1. 

 

The RDY line is pulled low on Φ1 and the processor is guaranteed to stop. 

Control of the address lines is returned to the processor on the next Φ1 

and RDY is set high at the same time. The result is the refresh logic had a 
full 1 cycle to refresh the memories and the processor lost only 1 cycle of 
execution time. A suggested configuration for this control logic is shown in 
Figure 2.18. 
 
 

 
 
 

Control Logic for Refresh Signal for Dynamic RAMS 
FIGURE 2.18 
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2.3.5 Hold-Time Control — MCS6501 

 
The data bus hold time required by the MCS6500 family parts is defined 
in Chapter 1. Each chip in the system requires that the data on the data 
bus be held for 10 nanoseconds past the trailing edge of the Phase Two 
clock pulse. Also, each device is guaranteed to hold data for this length 
of time to assure proper operation of the other devices in the system. This 
only assures that the family parts will work together. Operating with other 
RAMs and peripheral devices requires that a careful study be made of 
the timing requirements. This section discusses techniques for properly 
interfacing RAMs which require more than 10ns hold time guaranteed by 
the processor. These techniques are applicable primarily to the MCS6501 
since this device uses the input clocks and the DBE input. 
 
The data which is to be written into memory is actually available on the inputs 
to the processor data bus buffers from the beginning of the Phase One clock 
pulse. This data is normally gated onto the bus during Phase Two. However, 
if greater hold time is required, the designer can take advantage of the 
fact that this data can really be gated out during Phase One. This 
requires that a delay be provided between the Phase Two and Phase 
One clock pulses. The DBE output can then be connected to a Phase One 
pulse to cause the data to remain on the bus past Phase Two pulse which 
is used to latch data in memory. This timing is shown in Figure 2.19. 
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Timing Analysis of Data Hold Time 
FIGURE 2.19 
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2.4 ADDITIONAL SYSTEM CONSIDERATIONS 
 
After the basic system configuration is complete, extensive 
breadboarding and testing is usually required before the design is 
finalized. However, this breadboarding and evaluation must be 
preceded by a complete evaluation of the cost and performance of the 
proposed design to assure that the various goals of the project will be 
met. 
 
The first step in evaluating the design is to estimate the amount of ROM 
and RAM which will be required and to estimate the number and type of 
interface devices required to control the peripherals 
 

2.4.1 Peripheral Interface Devices 
 
The number and type of peripheral devices can generally be estimated 
very accurately. However, it is important to keep in mind that these 
estimates must be subject to review after a full analysis of system 
performance is completed. The designer may find it necessary to use a 
special-purpose interface part or to redesign the I/O structure if the 
evaluation of system performance reveals that the system cannot operate 
at the required speed. Use of special-purpose peripheral interface parts 
will reduce the number of tasks which must be handled by the processor 
and consequently can increase the overall system speed, but this 
generally involves additional component cost. 
 
Likewise, the use of a fully vectored interrupt can lead to increased 
performance at increased cost. The goal of any design program must be 
to meet all the system performance at the minimum possible cost. 
 
After the various peripheral devices in the system have been evaluated 
to determine the number of inputs and outputs required, the total required 
by all peripherals can be divided by 16 to determine the number of 
devices required. This is a good first approximation which will be re-
evaluated as the system development progresses. 
  

2.4.2 RAM 
 
The evaluation of the amount of RAM required by the system is a 
somewhat more difficult problem than estimation of peripheral devices. 
This is due primarily to the fact that much of the RAM is required by the 
system software as working storage, such as storage of immediate results in 
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arithmetic operations. Since the system program will probably not be 
written when these estimates are first attempted, the probability of error 
in this portion of the estimate may be fairly high. 
 
In addition to working storage, the RAM must provide storage for: 
 

1. The Stack; this is described in the Programming Manual.  
2. Peripheral input data storage.  
3. Peripheral output data storage. 

  
Items 2 and 3 above can be evaluated quite accurately since a detailed 
analysis of the peripheral devices has usually been completed when these 
estimates are first attempted. In general, a block of RAM must be made 
available for each peripheral device. The amount of RAM required for 
each is a function of the type of peripheral device being interfaced and 
just how the device is to be controlled. 
 
The amount of RAM required by the stack is a function of both the 
interrupt structure and the system software. As a result, an estimate of this 
requirement must be based on the system programmer's best estimates 
of his requirements. This should be combined with an estimate of the 
required working storage and the peripheral data storage requirements 
to obtain an estimate of the total system RAM. 
 

2.4.3 ROM 
 
The amount of ROM required in a system cannot be determined 
accurately until the system program is completed. However, by 
partitioning the system program into definable pieces, an estimate can 
be made of each task and the total can be obtained of the ROM required 
by each section. 
 
Most programs consist of easily defined sections such as the software for 
each peripheral device, arithmetic routines, etc. These are the pieces which 
should be examined separately to estimate the ROM required by each. 
 
  



 

121 
 

2.5 EVALUATING SYSTEM PERFORMANCE 

 
As discussed in the previous section, the peripheral interface structure for a 
system is fairly easy to configure if one assumes that MCS6520-type devices 
are used. However, before going too far into hardware construction, it is 
important that the total system performance be evaluated to minimize the 
probability that major problems will arise in the later stages of the design. 
 
Evaluating system performance involves first determining whether or not the 
processor is capable of processing all interrupts with the speed required and 
then determining that the processor has sufficient time to perform non-
interrupt operations. 
 
The prioritized interrupt structure assumes that at times, more than one 
interrupt will occur and that there will be delays encountered in servicing 
some interrupts caused by the presence of other interrupts. This structure will 
perform satisfactorily if these delays are not too great. 
 
The interrupt processing time should be evaluated starting with the highest 
priority interrupt, then going to the next highest priority, each time keeping 
in mind the total time which can be lost due to concurrent higher priority 
interrupts. Each time an interrupt is examined, the worst microprocessor 
response time which can be encountered should be estimated. If this time is 
still adequate for the function being handled by the interrupt, that aspect of 
the system operation can be expected to perform satisfactorily. 
 
The ability of the MCS650X microprocessors to handle interrupts quickly and 
conveniently represents one of the real strengths of this microprocessor 
family. However, in any system being developed, it is important that the 
percentage of processor time spent servicing interrupts not be so large that 
the internal data handling, arithmetic operations, etc. cannot be executed 
properly. 
 
Since the interrupts are usually asynchronous and are not related directly to 
the main line program, the time lost to interrupts can usually be viewed as 
an average percentage of the total time. The speed with which the main 
program can be executed will be reduced by this percentage. 
 
The interrupt service routines are usually short and easy to evaluate. 
However, the main program is much more difficult to estimate. Fortunately, 
it is also usually much less critical. Those operations which must meet a 
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particular speed requirement can be examined in detail by the 
programmer to determine the execution time. This estimated execution 
time must then be reduced to allow for the time lost to interrupts. 
 
The final step to assuring satisfactory system performance is a worst-case 
analysis. This is to determine if there are any places in the program where 
worst-case interrupts can cause excessive delays in the execution of other 
programs being executed. Although the effort involved in a complete 
worst-case analysis is usually excessive, this is one part of the system 
development task which can lead to significantly greater assurance of 
success for the entire development process. 
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CHAPTER 3 
 

BRINGING UP THE MCS6500 MICROCOMPUTER SYSTEM 

 

3.0 INTRODUCTION TO MICROCOMPUTER TESTING 

 
After many hours of planning, hardware construction, and programming 
effort, the microcomputer system designer must face what can be his most 
difficult task: "bringing up" his system. The modern microcomputer with its 
minimum chip count, and its minimum number of control and data lines 
represents a tremendous advance in system design when everything is 
working properly. However, it can also represent a testing nightmare to 
the designer who is attempting to trouble-shoot the hardware and 
software which constitute the total design. 
 
A microcomputer lacks many of the things which make testing of 
conventional logic relatively convenient. To begin with, one simply cannot 
see most of the control signals, data transfers, etc. which allow the system 
to operate. In addition, it is impossible to examine directly the contents 
of the registers and latches which store data within the processor. This 
data can only be examined indirectly by looking at the signals on the 
inputs and outputs to the chip at the proper time. 
 
This problem is compounded by the fact that many programs must be 
tested "dynamically"; i.e., the system must be running at its full operating 
speed with non-recurring events or with a total lack of usable oscilloscope 
triggering signals. 
 
For these and many other reasons, it is important that the system designer 
build effective testing capability into both his hardware and his software. 
This is particularly true for the pre-production prototypes. When 
combined with the procedures discussed below, this will minimize both the 
time and the effort spent in producing that first operational system. After 
the program and the hardware are completely debugged, many of the 
testing tools discussed below can be removed from the prototype design 
without affecting system performance. This allows the designer to arrive 
at his final production design very shortly after he has proven that the 
prototypes are operating satisfactorily. 
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3.1 STATIC TESTING 
 

3.1.1 Introduction 
 
Static testing, i.e., execution of the program, one cycle or one instruction at a 
time, is the first step in the checkout of any system. In this way, the general 
flow of the program can be examined and for much of the program the 
validity of data transfers into and out of memory can be verified. As shown 
in Figure 3.1, the logic necessary to control RDY to allow Single Cycle and 
Single Instruction Execution is relatively simple. This hardware and its use in 
system testing are discussed below. 
 

3.1.2 Single Cycle Execution 
 
The timing required for Single Cycle Execution is shown in Figure 3.2. In this 
operation, the RDY line has been brought low (GND) to halt the processor. 
To allow execution of a single cycle, the RDY line goes high (+2.4V), for one 
cycle each time the Single Cycle switch is activated. Note that the RDY line 
goes high while the Φ1 clock is high and the internal timing counter advances 

on the next Φ1 clock pulse. 
 
Single cycle operation allows stopping the processor in any cycle except a 
WRITE cycle. This allows detailed examination of all cycles of the instruction fetch 
operation. In addition, it permits detailed examination of operand fetches. Thus, 
it is possible to verify the operation of most of the hardware involved in memory 
addressing and control. It is also possible to verify the operation of most of the 
peripheral interface hardware. This can greatly reduce the time required to test 
the full dynamic operation of the peripheral device. 
 
Note that if depressing the Single Cycle switch allows the processor to advance 
into a WRITE cycle, the processor will complete this cycle and will then stop in the 
first READ cycle (R/W = 1) which follows. This timing is shown in Figure 3.2. 
 
Appendix A contains a detailed summary of the data which should appear 
on the address and data lines during each cycle of the MCS6501 and 
MCS6502 instructions. 
 
Note that the processor often puts out an address and fetches data which it 
ignores. This is an inherent feature of the processor which uses a "look ahead" 
approach to pipelining. Examination of the SYNC signal will allow the 
designer to keep track of exactly when the data fetched from memory is 
utilized within the processor and when it is ignored. 
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A very simple "data trap" can be built into prototype systems to allow 
examination of the address and data generated by the processor during 
WRITE cycles. This trap may latch the contents of both the address and 
data busses or it may latch only the address bus. The latter can be 
sufficient if a separate means of examining data in memory is provided 
(see Section 3.3). A suggested configuration for the "data trap" is shown 
in Figure 3.3. This circuit can be used to display the contents of the 
address and data busses for both READ and WRITE cycles. The WRITE 
data is latched and held during the next READ cycle. Depressing the Latch 
Reset switch then opens the inputs to the latches and allows monitoring of 
the subsequent READ cycles. 
 

3.1.3 Single Instruction Execution 
 
While it is extremely useful to be able to analyze the execution of each 
instruction in detail, it is often sufficient just to look at the general program 
flow. This is particularly useful when examining the operation of branches 
and jumps in a program. Single instruction execution is designed to allow 
this capability on the MCS6502 which outputs a SYNC signal. 
 
The operation of the single instruction execution logic is based on 
generation of a SYNC signal within the processor. This signal goes high 
(> +2.4V DC) during each OP CODE fetch cycle. Single instruction 
execution is implemented by using SYNC to force RDY low (< +0.4V DC). 
Under these conditions, the processor will always stop with an OP CODE 
address on the address bus and the OP CODE on the data bus. The timing 
for this operation is shown in Figure 3.4. Note that this diagram assumes 
that the processor is stopped in an OP CODE fetch cycle. Depressing the 
Single Instruction switch (Figure 3.1) allows execution of that instruction. 
The processor then stops when the next OP CODE is fetched. 
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Microprocessor Single Cycle Data Trap 
FIGURE 3.3 
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3.2 DYNAMIC TESTING 
 

3.2.1 Introduction 
 
Through static testing techniques, the designer should be able to verify the 
operation of most of his processor interface hardware, such as the Bus 
Expanders and Address Decoders (for selecting ROMs, RAMs, etc.). 
However, this is only a first step to assuring proper system operation. Most 
peripheral devices cannot be properly tested unless the processor is 
operating at full speed. This necessitates full dynamic testing. 
 
Dynamic testing generally involves causing the processor to execute a 
program loop, i.e., to execute a repetitive sequence of instructions. This 
allows the use of an oscilloscope in examining the processor operation. This 
repetitive operation can be externally induced through the RES or Interrupt 
(IRQ or NMI) lines, or it can be a part of the program being executed. Both 
techniques play an important role in the system checkout process. 
 

3.2.2 Externally Induced Loops 
 
The most direct means of causing the processor to execute a loop is to drive 
one of the direct inputs (RES, IRQ or NMI) with a signal generator. This 
technique can be used to trouble-shoot systems which are only partially 
operational since it does not rely on proper execution of a particular set of 
instructions to cause looping to occur. However, this technique can only be 
used if an oscilloscope can be employed in examining system operation. To 
do so requires an effective scope-synchronizing signal. For this reason, the 
following section will discuss not only the signals to be tested and the 
waveforms which one should see but also the techniques one may use to 
assure generation of an effective scope sync. 
 
Probably the most basic operation performed within the processor is the 
RESET function. Without the RESET hardware and software operating 
properly, the system will never enter its normal operating mode. For this 
reason, the first major function to be tested, both statically and dynamically, 
is the RES input. 
 
A suggested configuration for dynamically testing the RESET input is shown 
in Figure 3.5. In this diagram, the RESET input is being driven from a signal 
generator. Between the signal generator and the processor is a D-type flip-
flop to synchronize the chip reset signal to the processor clocks. 
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Suggested Configuration for Dynamic Reset Testing 
FIGURE 3.5 
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This synchronizing is extremely important because it stabilizes the data 
being displayed on the oscilloscope with respect to the scope sync. 
 
The most effective procedure for testing the dynamic operation of the 
RESET function is to reset the system initially at a rate of approximately 
one-fifth of the clock rate. This will allow the processor to execute the first 
few instructions in the reset sequence before being recycled. The designer 
can then closely examine the timing of address, data and R/W signals. 
Use of the delayed sweep feature available on most modern 
oscilloscopes will allow examination of any part of the RESET operation. 
  
When proper operation of the RESET input has been verified, the same 
technique can be applied to both the IRQ and the NMI inputs. Driving 
either of these inputs with a signal generator synchronized to the 
processor clocks will allow a close examination of the dynamic operation 
of the interrupt polling sequence. This provides a very important look at 
the Peripheral Interface selection logic to assure that all peripheral 
devices are responding to the proper address. 
 

3.2.3 Software Loops 
 
During system checkout, the designer must verify the operation of many 
simple functions which must all operate properly before the entire system 
is operational. The use of simple software loops will allow a detailed 
examination of one function at a time. Most importantly, it allows the 
designer to use an oscilloscope to examine events which may occur very 
infrequently and which are normally very difficult to see. 
 
The execution of software loop requires the writing of a program which 
ends in a JMP back to the beginning of the program. Once the processor 
enters the loop it will continue to execute the same sequence of instructions 
until the RESET switch is pushed. 
 
To utilize software loops effectively there must be an event which 
happens only once each time the processor executes the loop. This signal 
can be used to trigger the oscilloscope. Including a single WRITE 
operation in the program allows the R/W signal to be used to trigger the 
scope. Likewise, careful selection of address in the program will allow use 
of an address line as a scope sync. Finally, lacking anything else, setting 
and resetting a peripheral interface device output pin at the beginning 
of the program provides a very effective sync signal. 
 



 

133 
 

3.3 SYSTEM DIAGNOSIS USING HARDWARE PROGRAMMER AIDS 
 
In addition to the techniques described in which the user utilizes 
oscilloscopes and his own innovative techniques for analyzing data, MOS 
Technology, Inc. makes available to the user several hardware aids which 
assist in debugging of a microcomputer system and also a software aid 
called the emulator. The hardware aids are a Keyboard Input Monitor 
(KIM), a Teletype Input Monitor (TIM), and a Microcomputer Development 
Terminal (MDT). Each of these aids is designed to allow the debugging 
of microprocessor code without need to resort to scopes or other data 
trapping techniques, but rather attempts to reduce the problem of 
debugging the code to the same techniques that are available on a large 
computer system. 
 
The basic assumption of each of these devices, either hardware or 
software, is that the microprocessor system is connected correctly, all the 
electrical characteristics have already been checked and met and that 
the only problem to be solved is one of debugging programs and I/O 
hardware which have been entered into the microcomputer. 
 
Each of the hardware techniques assumes that the user will start his design 
sequence with all of his programming being done in some form of random 
access memory which is loadable from an I/O device, examinable by the 
I/O device and changeable by the I/O device. This is the normal first 
step in developing a microcomputer system and one that should be used 
prior to committing any of the hardware to PROMs or alterable memory. 
The only exception to this is if the user is taking advantage of the software 
emulator and if his program is such that the emulator can give him a 
significant degree of confidence in his coding in which case the use of the 
KIM or TIM devices is primarily that of allowing him to have final 
debugging access to his various memory locations. Therefore, the 
common characteristic of all these approaches is that by some 
technique, in the case of the Emulator by reading an input file, in the 
case of TIM by reading in an input tape from the output Cross-
Assembler, in the case of KIM loading a program into memory by 
hand, and in the case of MDT either assembling the program or 
loading input data from the Cross-Assembler, the program has been 
entered into a program storage. Each of these techniques allows the user to 
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initialize various memory and register locations and to "start execution" of 
this program at a memory location. Techniques are implemented which allow 
the user to stop his program at a particular point and analyze the results of 
the operations which have just been completed. If the results are correct, the 
coding between the start point and the stop point is correct. If the coding is 
incorrect, the user analyzes the data which he displays by use of the I/O 
device and the hardware or software that interfaces it, and determines by 
inspection of the data and analysis of his coding what error could cause the 
results detected. 
 
If the technique of just analyzing coding is not sufficient, each of these systems 
has the ability to allow the user to go in and re-execute the code with new 
data or the original data, only stopping at earlier stop points until he is able 
to trap the operation that causes the erroneous data to occur. Both the 
emulator and MDT have additional features which allow the user to analyze 
the operation of instructions as they occur which is very useful in determining 
which part of the program causes operations to be performed incorrectly. 
 
The normal design cycle should actually include a combination of techniques. 
If the user is not using MDT, then he should write his code on a Cross-
Assembler and debug much of his loops and non-I/O programming using the 
Emulator. The Emulator has been designed to allow very easy analysis of 
data paths, loops and performance of program on a non-hardware basis. It 
is particularly useful for the user who is developing routines which have 
significant loop and subroutining or any completed algorithm. 
 
The use of emulation has the following advantages: 
 

1. It gives the power of a large machine to allow tracing operations 
which are not very feasible at the hardware level.  

2. It may indicate prior to the time that the hardware is committed that 
more memory or more time is required to perform an operation 
which may dramatically change the hardware implementation which 
is to be committed. 

 
In any case, attempting to bring up the microprocessor system without use of 
assemblers and an interface module such as TIM is not the most efficient use 
of the designer's time. For the user who is just starting in microprocessors, the 
KIM technique is acceptable because the length and complexibility of the 
programs to be written should be shorter and the user can program directly 
in Hex and debug using the KIM exclusively. 
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3.3.1 KIM — Keyboard Input Monitor 
 
KIM allows the user to key in Hex values into specified memory locations and 
to monitor results. 
 
KIM is available to the system designer in several forms. In its simplest form, 
a single device of the MCS6530 type including 1024 bytes of pre-
programmed ROM may be included as a component in an existing system. 
The KIM array includes a monitor program which provides the following 
features: 
 

a) Data input and output control from serial teletypewriters (ASR 33, 
Silent 700, etc.)  

b) Data input and system control from a 22-key keyboard. 
c) Address and data display on a 6-digit, 7-segment type display. 

 
A microprocessor system designed to include the KIM array will allow the 
designer to perform the following operations: 
 

a) The user may select keyboard (KB) or teletypewriter for entry, 
display and control. 

b) If in KB mode, the user may enter address or data fields from the 
Keyboard. The user may display the contents of any address 
location in the system and can modify the contents of any address 
location (other than pre-programmed ROM locations). The step 
operation (STEP key) provides a convenient method for displaying 
the data contained in successive memory locations. Program 
execution may be authorized to begin from any selected starting 
address using the RUN key. 

c) If in the TTY mode, the user may obtain a printing of the data at 
any memory location. He can modify the data contained in any 
memory location. Program listing from any start address to any end 
address may be authorized. Paper tapes may be loaded or 
generated automatically. Finally, program execution may be 
initiated from any selected starting address. 

d) In either mode, the user terminates program execution using the 
STOP key which will return control of the system to the KIM program. 
Alternatively, a depression of the RST key causes a total reset of 
the system and a return of the system to KIM program control. 

 
The KIM array is also available to the system designer as a part of a special 
design-in sub-system provided in the form of a printed circuit card. Included 
on this card are the following functional elements: 
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a) MCS6502 microprocessor array 
b) MCS6530-002 array (containing the KIM monitor program) 
c) 22-key keyboard and mode-select switch 
d) 6-digit, 7-segment LED display 
e) 1024 x 8 RAM 
f) MCS6530-003 array providing an interval timer, 16 I/O pins, 

and 64 bytes of RAM 
g) All interface circuits for operation with serial teletypewriters. 

 
This subsystem provides the same operating features described earlier 
but is supplied as an operating unit requiring the user to provide only the 
+5 volt power supply in order to commence operating. As a "stand- 
alone" subsystem, the user may enter and debug programs of up to 1024 
steps and control the action of up to 16 I/O pins. 
 
For further details on physical and operating characteristics of the KIM 
array and subsystem, the reader is referred to the KIM manual supplied 
separately. 
 

3.3.2 TIM — Teletype Input Monitor 
 
TIM is a pre-programmed MCS6530. The application of the Teletype 
Input Monitor is to allow the user to interface to an ASCII device such as 
a Teletype, CRT, Execuport, etc. using the ASCII serial communication 
techniques to communicate to and from the microprocessor. This 
effectively allows the user to load memory from the keyboard or from 
paper tape or cassettes which are attached to his device. By the addition 
of a single TTL package to the system, TIM can be configured so that it is 
the starting point for the microprocessor, but once the initialization has 
been accomplished it transfers itself out of the start-up memory, changes 
the rest of the microprocessor memory to normal configuration and 
operates transparent to the microprocessor. 
 
The technique for using the TIM to develop a microprocessor system is 
primarily after the system is determined to be wired correctly by the 
techniques already described. It is then used to debug the user's code by 
means of allowing the user to input pre-specified values, execute portions 
of the code and examine the results. 
 
It should be noted that because I/O devices are extension of memory, 
debugging techniques are simplified. They can be configured to 
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control I/O devices to test that lights can be lit, switches tested, motors 
started and stopped, etc. For instance, all of the connections to lights and 
switches can be checked from the teletype keyboard by writing into the 
I/O registers the appropriate code that turns on the lights. Correct 
operation of switches can be checked without the program running by 
putting the switches in either state and reading the I/O device result 
indicated to the programmer. This type of checking totally shakes out the 
I/O connections to make sure the I/O device is located in the correct 
memory address, determines that the wiring to the I/O devices is correct 
and checks on the microprocessor bus. 
 
A rational technique for using either TIM or KIM is to interconnect the 
device into the system to get the microprocessor to pass the single-step 
start-up sequence and then to use the debugging capability of the TIM 
prior to executing any of the user's code to verify that all input/output 
connections are correct. In cases such as stopping motors and other 
devices which require timing, the proper connection to the motors and 
other devices can be checked without the motor itself physically being 
checked by unconnecting leads, opening up connectors and verifying with 
a scope or a meter that the microprocessor's influence at that point is as 
would be expected on a static basis. Therefore, this technique is 
recommended as the second step of a start-up sequence. 
 
Significant details are given in the section on the use of restart or start 
sequence and a single cycle operation to verify the interconnection of 
most of the system. It should be recalled that the instructions were given 
independent of the coding that was available to the programmer. 
 
The advantage of using the TIM or KIM in the start-up check-out is that 
there is known code which is guaranteed to be accurate that should 
be evoked during this start-up sequence. By looking at the coding of 
the ROM as it appears in the documentation on the TIM or KIM, the 
user can use the known sequences from the TIM or KIM program to 
verify the start-up sequence, thereby removing one more variable. 
Therefore, all initial systems check-out should be done using TIM 
or KIM program first in the start-up sequence to make sure that 
the interconnection to TIM and to memory are correct. Then once 
the basic operation of TIM has been verified, there is a known 
sequence that the TIM will go through dynamically which will allow 
the user to verify that the TIM is operational. Then the user should 
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verify the rest of his memory and I/O connections by use of writing and 
reading in the memory locations using the debugging feature of the TIM 
or KIM. This verifies the connection and operation of each of the chips of 
the system and will verify all the interconnections to all outboard devices. 
 
Now the problem is truly reduced to making sure that the programmer's 
code is correct and the user's program can be loaded by means of either 
through-the-keyboard or through-the-auxiliary devices. 
 
The program can be debugged as a program rather than worrying about 
whether or not the problem is one of hardware or software. By definition 
other than incorrect timing to I/O devices, the problem has been reduced 
to one of programming mistakes. 
 
For a more detailed discussion on the programming on TIM, the user is 
referred to the TIM manual supplied separately. 
 

3.3.3 MDT — Microcomputer Development Terminal 
 
Almost all of the sections in this report had to do with how one goes about 
interconnecting a system and debugging it. MDT is a prepackaged system 
and, therefore, should not have the problems described above unless it is 
being used in circuit emulation mode. Therefore, the user will primarily be 
debugging his programs and his basic interconnection to his I/O devices 
with the MDT. Therefore, use of the MDT represents a significantly 
different technique than described in this manual. This technique is 
described in the MDT manual. 
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3.4 MICROPROCESSOR START-UP PROCEDURE 

 

3.4.1 Introduction 
 
This section attempts to tie together all of the techniques previously discussed 
into one ordered procedure. This procedure is based on experience gained 
in bringing up systems using processors from several different manufacturers. 
While it is certainly true that no single procedure can be expected to catch 
all the software and hardware errors which can exist in microcomputer 
systems, it is hoped that this step-by-step approach will allow the designer 
to bring up his system with an absolute minimum of difficulty. 
 
This procedure assumes the existence of Single Cycle and/or Single 
Instruction logic. Any of the System Development tools discussed in Section 
3.3 will assist the user in bringing up his system. These devices allow 
convenient entry of test programs as well as modification of the system 
program and data. 
  
Each step in the procedure includes the following information: 
 

 Section of the System hardware/software to be checked.  

 Hardware, test equipment, etc. required to perform the test.  

 Action to be taken in implementing the test.  

 Expected results.  

 Suggested procedures for analyzing failure modes. 
 
It cannot be emphasized too strongly that one must utilize a very methodical, 
step-by-step procedure aimed at solving one problem at a time within the 
system. It is very easy for several problems to amplify each other to such an 
extent that nothing within the system seems to be operating properly. 
Correcting problems one at a time will ultimately yield a complete working 
system with minimum frustration. 
 

3.4.2 System Power — Step 1 

 
It is generally recommended that first prototypes of microcomputer systems 
be built using sockets for the ICs (processor, memories, etc.). One distinct 
advantage of this technique is that it allows the designer to verify 
that VDD and VSS are properly connected to each socket before the chips are 
inserted. The VDD line should be within the tolerances specified about the 5 
volt nominal relative to VSS: This basic first step can help avoid power supply 
connections which may be fatal to the chips in the system. 
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After using a voltmeter or oscilloscope to check power connections, insert the 
processor into its socket and verify that the additional current drain is within 
specifications for this device. 
 
Before inserting the other devices, examine the address lines, SYNC line (6502) 
and the output clocks (6502, 6503) to make sure that the processor is 
generating signals. The address lines should be incrementing and the SYNC 
line should be generating regular, positive going pulses. The RES line and the 
RDY line should be high (> +2.4V) for this test. 
 
If the processor appears to be operating and power consumption is 
reasonable, the rest of the devices in the system can be inserted into their 
sockets. 
 

3.4.3 Basic System Timing — Step 2 
 
Before one can expect a microprocessor system to function, proper operation 
of the basic system timing signals (Φ1,  Φ2, etc.) must be verified. The most 
important of these signals is the system clock. 
 
A common fault in MC6800 and MCS6501 systems is generation of input 
clocks (Φ1 and Φ2) which are not full voltage or which have significant overlap. 
Another very serious difficulty often encountered is undershoot. Each of the 
specifications listed in the data sheet for the system clocks must be properly 
met. Figure 3.6a illustrates the problems often encountered in clock signals such 
as undershoot and overlap. Figure 3.6b is an example of MCS6501 Φ1 and 

Φ2 clocks as they would normally appear in a properly operating system. 
 
In systems based on other than the MCS6501, the clocks which must be 
examined are the processor output clocks. In the 6502, both phases (Φ1 and 

Φ2) are available for driving the rest of the system. In this system it is necessary 
to check the clock timing very carefully to assure that the timing of the clock 
signals within the processor is compatible with that used on the support chips. 
 
Using an oscilloscope, compare the Φ1, input clock and the Φ2 clock presented 
to the support chips to verify that the delay due to clock buffering does not 
exceed the allowable maximum. 
 

3.4.4 System Reset — Step 3 
 
Static and dynamic analysis of the Reset function can provide very 
detailed information on how the system is operating.  In fact, it is this 
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Improper Clocks (Note undershoot and overlap) 
FIGURE 3.6a 

 
 

 
 

Proper Clocks 
FIGURE 3.6b 

 
 

MCS6501 
Clock Timing Signals 

FIGURE 3.6 
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FIGURE 3.7a 
 
 

 

 
 Φ1 
 
 
 Φ2 
 
 
 ADDRESS BUS LINE 

 ADDRESS BUS LINE 

 
Excess Address Lines Loading 

FIGURE 3.7b 
 
 

Address Lines in MCS650X Systems 
FIGURE 3.7 
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The Data Bus in MCS650X Systems 
FIGURE 3.8 
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step which will verify the operation of most of the basic system hardware. 
The tools required are: 
 

 Single Cycle/Single Instruction Logic 

 Oscilloscope 

 Signal generator (for driving RESET) 
 

3.4.4.1 Static Analysis of System Details 
 
Depress the HALT button and then the manual RESET switch; then push the 
single cycle switch six times. This will step the processor through the first 
part of the BRK sequence and into the RESET vector fetch. At this time the 
processor should be generating FFFC on the address bus and the ROM 
should have put the low order byte of the RESET vector onto the data bus 
in response to this address. This is an excellent time to check the following 
very basic items: 
 

A. Address Lines: 
Using the oscilloscope, verify that the logic levels on the address lines 
are proper and that they are reflected properly through any bus 
expanders onto the memory and peripheral chips. This is a very 
important test since improper implementation of bus expanders is a 
very common circuit fault. 

 
B. ROM/PROM chip selects: 
Using the oscilloscope, verify that the address FFFC does select the 
ROM which contains the low order byte of the RESET vector. 

 
C. Data Bus: 
Using the oscilloscope, verify that the voltages on the data bus pins 
of the processor are proper. It is important that these signals be 
analyzed at the processor to assure proper operation of any bi-
directional bus expanders in the system. In this test, the most common 
indication of improper operation of the data bus expanders is 
"floating" processor data bus pins, i.e., the processor data bus pins 
are being driven neither high nor low because the bus expanders are 
in the open-circuit condition or are reversed. 
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D. Miscellaneous Processor Pins: 
Using the oscilloscope, briefly examine the other processor pins 
(R/W, IRQ, NMI, etc.) to assure that there are no voltage level 
problems detectable at this point. Both of the interrupt inputs and the 
R/W output should be high. Examine the R/W signal on the input to 
the memory and peripheral devices. 
 

After these initial tests are complete, it should be possible to press the 
single step switch once more to fetch the high order byte of the interrupt 
vector from address FFFD. On the next actuation of the single cycle switch, 
the processor address bus should contain the RESET vector which was 
fetched from memory. 

 
At this point, the processor is ready to execute the system initialization 
routine. During initialization, it can be expected that program memory 
will be accessed, peripheral registers will be loaded, and internal 
processor registers will be cleared or set to a starting value. It is 
extremely useful to execute this routine one instruction at a time to 
determine that each time program memory is accessed, the proper 
instruction is returned. However, unless a data trap is provided, it will be 
more meaningful to utilize dynamic analysis techniques to analyze the 
operation of peripheral devices, since most peripheral accesses will be 
for the purpose of writing either the I/O control or the control registers in 
the peripheral devices. 

 

3.4.4.2 Dynamic Analysis of System Details 
 
The general technique of dynamic analysis is discussed in Section 3.2. The 
discussion which follows will use this technique to analyze many of the 
details of the system operation. 
 
Set up the system as described in Section 3.2.2. After the test equipment 
is operating properly, most of the system operation can be verified using 
only the oscilloscope. 
  

3.4.4.2.1 Address Bus Verification 
 
The first item which must be checked is the specific timing of the 

address lines.  These lines will change during the first part of Φ1 but after 

the specified period, they should stabilize and remain stable through 
 



 

146 
 

the rest of the cycle. Figure 3.7a shows the waveform which one should 

expect to see while examining Φ1, Φ2 and two address lines. In this 
illustration, one address line is going high and the other is going low. 
These lines are being generated within the processor and are guaranteed 
to operate properly provided the total loading on the pins is within 
specifications. The most common cause of both voltage level and rise time 
problems is overloading. Voltage level problems are commonly 
evidenced by the "zero" level being too high, i.e., the address buffer is 
being asked to sink too much current. Excess capacitance is usually 
evidenced by the rise and fall times being too long (Figure 3.7b). 
 
In examining the address lines, it is important that the data be examined 
on the processor and directly on the various support chips. This will assure 
that any bus expanders in the system are operating properly and that 
the addresses are valid where they are actually being used. 
 

3.4.4.2.2 Data Bus Verification 
 
After the addresses have been verified, the next step is to examine the 
data bus to verify the validity of data being transferred both from the 
processor to the support chips and from the support chips back into the 
processor. 
 
Figure 3.8 illustrates the waveform which one can expect to see on the 

data bus lines. It is very important to note that during Φ1, there is no way 
to predict the voltage on the data bus since neither the processor nor the 

support chips are driving these lines. However, during Φ2 the data bus 

pins should go either high or low. It is only during Φ2 (high) that the 
validity of the data can be verified. 
 
Three very important parameters must be considered when examining 
the data bus. These are the voltage levels, the time at which the data is 

valid and the delay from the trailing edge of Φ2 to data becoming 
invalid. 
 

A. Voltage Levels: 
The logic levels on the processor data bus must always be greater than 
2.4 volts for a logic 1 and less than 0.4 volts for a logic 0.  This is a very 
basic concept but a quick check on these levels very early in the checkout 
procedure can help the designer avoid hours of attempting to make a 
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system operate with signals which are actually marginal but which 
on the surface appear to be satisfactory. 
 
Another very important item to check is whether or not the logic "0" 
voltage is actually going negative (below GND). It is very important 
that the logic signals going into all the chip inputs not be allowed to 
go below -0.3 volts as indicated in the specifications. 

 
B. Data Valid Time: 
The time at which data becomes valid indicates the total time which 
the processor or memory has available to stabilize the gates and 
latches used to trap the data within the chip. For this reason the data 
must not take too long to reach either a valid high "1" or a valid low 
"0." The primary cause of slow signals on the data bus is excessive 
loading, either resistive or capacitive. Carefully check the devices 
which are attached to the bus to make sure that the total loading is 
within specifications. 

 
C. Hold Time: 
The last important consideration, hold time, is defined as the time 

between the trailing edge of the Φ2 pulse and the point at which 

data is no longer valid. A minimum of 10n sec hold time is required 
for the processor to trap the data into its internal input latches. The 

processor internal Φ2 pulse is used to gate the contents of the data 

bus into these latches. Hold time is also required by the various 
support chips within the system. Carefully check the signals as they 
appear on the RAMs, ROMs, etc. to verify that each is being 
operated in accordance with its specification. 
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3.4.5 Detailed Component Check 

 
After the dynamic check of the reset routine, the next step is to attempt 
to run the system program. The success of this operation will determine 
whether or not a further detailed component check is necessary. It is 
important to note that the checkout of the system program should proceed 
one step at a time in much the same manner as we have approached the 
hardware checkout. If a careful examination has been made of all of the 
devices, data paths, etc. in the system, the software checkout can proceed 
under the assumption that the hardware is fully operational. However, it 
is inevitable that doubts will arise. There are times in the software 
checkout process that the program will appear to be incorrect; data won't 
be going into memory as it should or, in general, some hardware failure 
will be indicated. As soon as this happens, the suspected components 
should be examined in detail. In keeping with the policy of "one step or 
one problem at a time," it is important that potential hardware problems 
not be allowed to invalidate the effort being put into the software 
checkout. 
 
Component problems can be one of two types: component failure, i.e., a 
part not operating per specifications; or system failure, i.e., a part being 
used wrong in the system. The latter problem can be a result of incorrect 
system design or incorrect wiring. The problem of functional components 
not operating properly in the system is the one which will be addressed 
here. In fact, if there is any doubt about a component being functional, it 
should be replaced immediately upon verification of proper signals to all 
inputs. If it still does not operate properly, the problem is most likely 
system related. 
 
The detailed component check is performed most effectively by loading 
a small looping program into the system RAM. For this reason, the TIM or 
KIM debug software (see TIM and KIM Manuals) can be of significant 
value in this process. The procedure involves static and dynamic operation 
of a small test program which exercises each of the components in the 
system. The goal of this step should be a complete verification that all 
chip selects are operating properly, that all data address lines are 
operating properly and that the support chips are driving the processor 
properly. 
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The suggested procedure for checkout of each type of component 
is discussed separately below. 
 

A. ROMs (PROMS): 
The most straightforward component in any microprocessor 
system is the ROM. This device simply puts out an 8-bit word 
onto the data bus in response to an address. Difficulty with 
ROMs is usually caused by improper chip selects or by mis-
application of devices which are not part of the MCS6500 
family. For this reason, static testing of ROMs is usually a very 
effective first step. This requires entering a test program into 
RAM and executing this program using the single cycle switch. 
The program itself should simply perform a READ (for example, 
an LDA or LDX instruction) of a selected word for each ROM 
chip to be tested. The chip selects can then be examined and 
at the same time, the address lines presented to the chips can 
be examined along with the data put on the data bus. 
 
After the chip select, address bus and data bus have been 
verified statically, it may be necessary to execute the same 
test program dynamically to assure that all chips in the system 
are operating at system speed. At this point, it may be 
necessary to include a WRITE operation (STA, STX, STY, etc.) 
in the loop to provide a sync signal. 
 
Analysis of the dynamic operation of the ROMs should involve 
first looking at each address and data bus lines directly on the 
processor chip. It is here that the address is being generated, 
and it is here that the data must meet a speed specification. If 
data is not valid at the proper time, the next step is to 
determine where excessive delay has been introduced into the 
data path from address output, through the ROM and back to 
the processor data bus. Keep in mind that it is this entire path 
which must operate at speed to assure proper processor operation. 
In fact, if the delays are excessive, it may be necessary to slow 
down the system clock rate to allow the program data to reach 
the processor in time. An alternative solution to this problem 
is the implementation of the RDY signal to hold the processor 
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for one cycle each time it fetches data or program from the 
ROMs. 
 
Although the problems discussed above may be encountered at 
this point, it is much more likely that a wiring error will cause a 
single address or data line to be excessively loaded so that it 
operates slow or not at all. This problem can usually be detected 
and fixed quite easily by looking at each component in the data 
path. 
 
B. RAMs: 
Operation of the RAMs in a microprocessor system can be 
checked in much the same manner as the ROMs. Execution of a 
test loop program both statically and dynamically for each chip 
in the system should be sufficient to verify proper operation of 
the RAMs in the system. For each RAM, both a WRITE and a 
READ operation should be included in the test loop. This will 
allow checkout of data transfers in both directions. 
 
During single cycle execution of the test loop, the processor will 
stop only in the RAM read operations. However, this will allow 
a static check of the chip select logic and the address and data 
lines. Running the program dynamically will allow verification 
that the data and address signals presented to the RAMs during 
the WRITE operation are within specification for the RAM being 
used in the system and that the total delays through the address, 
RAM, and data bus path are within specifications for the 
processor during the READ operations. As with the ROMs, the 
most likely problem to be encountered at this point is wiring 
errors which cause a specific device to operate improperly. A 
careful check of each pin will allow detection of this type of 
problem. 
 
C. PIAs: 
The peripheral interface devices (6520, 6530, etc.) can all be 
checked out in the manner described above. However, since 
these chips do many different operations, the test program must 
be much more complex than that required for the ROM and RAM. 
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However, it can usually be limited to testing only those functions 
which are used in the system. 
 
A large part of the operation of the peripheral interface devices 
can be verified by doing a WRITE followed by a READ for each 
register on the chip. This will allow a complete checkout of the data 
paths between the processor and the chips as well as a checkout of 
all the chip select functions. However, a more complete analysis may 
be required to verify that data is appearing properly on the output 
pins of the peripheral chip and that data on the inputs is being 
reflected properly back into the processor. This will involve 
disconnecting the peripheral subsystem which the processor is 
attempting to drive and manually putting data into the inputs. A 
separate test can verify the validity of output data. 

 
After the system hardware has been examined in the detail discussed 
above, the designer will have developed confidence that his system can 
operate properly once the system program is completely debugged. 
Verification of the system program should proceed with a section-by-
section checkout as discussed above. Each subroutine, interrupt routine, 
etc. should be examined separately. They can then be combined to form 
the major peripheral operating routines, arithmetic routines, etc. that 
make up the system. The final result should be a functioning program 
which has been examined in all its details running on a system which is 
fully operational. 
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APPENDIX A 
 

SUMMARY OF SINGLE CYCLE EXECUTION 
 
This section contains an outline of the data on both the address bus and the 
data bus for each cycle of the various processor instructions. It tells the system 
designer exactly what to expect while single cycling through a program. 
 
Note that the processor will not stop in any cycle where R/W is a 0 (write 
cycle). Instead, it will go right into the next read cycle and stop there. For this 
reason, some instructions may appear to be shorter than indicated here. 
 
All instructions begin with T0 and the fetch of the OP CODE and continue 
through the required number of cycles until the next T0 and the fetch of the 
next OP CODE. 
 
While the basic terminology used in this appendix is discussed in the 
Programming Manual, it has been defined below for ease of reference while 
studying Single Cycle Execution. 
 
OP CODE — The first byte of the instruction containing the operator and 

mode of address. 
 
OPERAND — The data on which the operation specified in the OP CODE is 

performed. 
 
BASE ADDRESS — The address in Indexed addressing modes which specifies 

the location in memory to which indexing is referenced. The high order 
of byte of the base address (AB08 to AB15) is BAH (Base Address High) 
and the low order byte of the base address (AB00 to AB07) is BAL 
(Base Address Low) 

 
EFFECTIVE ADDRESS — The destination in memory in which data is to be 

found. The effective address may be loaded directly as in the case of 
Page Zero and Absolute Addressing or may be calculated as in 
Indexing operations. The high order byte of the effective address 
(AB08 to AB15) is ADH and the low order byte of the effective address 
(AB00 to AB07) is ADL. 

 
INDIRECT ADDRESS — The address found in the operand of instructions 

utilizing (Indirect),Y which contains the low order byte of the base 
address. IAH and IAL represent the high and low order bytes. 

 
JUMP ADDRESS — The value to be loaded into Program Counter as a result 

of a Jump instruction. 
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A.1. SINGLE BYTE INSTRUCTIONS 

 ASL DEX NOP TAX TYA 
 CLC DEY ROL TAY  
 CLD INX SEC TSX  
 CLI INY SED TXA  
 CLV LSR SEI TXS  
 
These single byte instructions require two cycles to execute. During the 
second cycle the address of the next instruction in program sequence will 
be placed on the address bus. However, the OP CODE which appears on 
the data bus during the second cycle will be ignored. This same instruction 
will be fetched on the following cycle at which time it will be decoded 
and executed. The ASL, ROL and LSR instructions apply to the accumulator 
mode of address. 
 

Tn Address Bus Data Bus R/W Comments 

T0 PC OP CODE 1 Fetch OP CODE 

T1 PC+1 
OP CODE 
(Discarded) 

1  

T0 PC+1 OP CODE 1 Next Instruction 
 
 
 

A.2. INTERNAL EXECUTION ON MEMORY DATA 

 ADC CMP EOR LDY  
 AND CPX LDA ORA  
 BIT CPY LDX SBC  
 
The instructions listed above will execute by performing operations inside 
the microprocessor using data fetched from the effective address. This 
total operation requires three steps. The first step (one cycle) is the OP 
CODE fetch. The second (zero to four cycles) is the calculation of an 
effective address. The final step is the fetching of the data from the 
effective address. Execution of the instruction takes place during the 
fetching and decoding of the next instruction. 
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A. 2.1. Immediate Addressing (2 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 Data 1 Fetch Data 
 T0 PC+2 OP CODE 1 Next Instruction 
 
 
A. 2.2. Zero Page Addressing (3 Cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 ADL 1 Fetch Effective Address 
 T2 00, ADL Data 1 Fetch Data 
 T0 PC+2 OP CODE 1 Next Instruction 
 
 
A. 2.3. Absolute Addressing (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 ADL 1 Fetch low order Effective 

Address byte 
 T2 PC+2 ADH 1 Fetch high order Effective 

Address byte 
 T3 ADH, ADL Data 1 Fetch Data 
 T0 PC+3 OP CODE 1 Next Instruction 
 
 
A. 2.4. Absolute Addressing (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 BAL 1 Fetch Page Zero Base 

Address 
 T2 00, BAL Data 

(Discarded) 
1  

 T3 00, BAL + X ADL 1 Fetch low order byte of 
Effective Address 

 T4 00, BAL + 
X + 1 

ADH 1 Fetch high order byte of 
Effective Address 

 T5 ADH, ADL Data 1 Fetch Data 
 T0 PC+2 OP CODE 1 Next Instruction 
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A. 2.5. Absolute, X or Absolute, Y Addressing (4 or 5 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 BAL 1 Fetch low order byte of Base 

Address 

 T2 PC+2 BAH 1 Fetch high order byte of Base 
Address 

 T3 ADL: BAL+ 
Index register 
ADH: BAH + C 

Data* 1 Fetch Data (no page-
crossing) 
Carry is 0 or 1 as required 
from previous add operation 

 T4* ADL: BAL + 
Index register 
ADH: BAH + 1 

Data 1 Fetch Data from next page 

 T0 PC+3 OP CODE 1 Next Instruction 

* If the page boundary is crossed in the indexing operation, the data fetched 
in T3 is ignored. If page boundary is not crossed, the T4 cycle is bypassed.

 
 
A. 2.6. Zero Page, X or Zero Page, Y Addressing Modes (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC+1 BAL 1 Fetch Page Zero Base 

Address 

 T2 00, BAL Data 
(Discarded) 

1  

 T3 00, BAL +  
Index register 

Data 1 Fetch Data (no page-
crossing) 

 T0 PC+2 OP CODE 1 Next Instruction 
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A. 2.7. Indirect, Y Addressing Mode (5 or 6 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC+1 IAL 1 Fetch Page Zero Indirect 
Address 

 T2 00, IAL BAL 1 Fetch low order byte of Base 
Address 

 T3 00, IAL + 1 BAH 1 Fetch high order byte of Base 
Address 

 T4 ADL: BAL + Y 
ADH: BAH + C 

Data* 1 Fetch Data from same page 
 
Carry is 0 or 1 as required 
from previous add operation 

 T5* ADL: BAL + Y 
ADH: BAH + 1 

Data 1 Fetch Data from next page 

 T0 PC + 2 OP CODE 1 Next Instruction 

*If page boundary is crossed in indexing operation, the data fetch in T4 is 
ignored. If page boundary is not crossed, the T5 cycle is bypassed. 

 
 
A. 3. Store Operations 

 STA     
 STX     
 STY     
 The specific steps taken in the Store Operations are very similar to those 

taken in the previous group (Internal execution on memory data). 
However, in the Store Operation, the fetch of data is replaced by a 
WRITE (R/W = 0) cycle. No overlapping occurs and no shortening of 
the instruction time occurs on indexing operations. 

 
 
A. 3.1. Zero Page Addressing (3 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 ADL 1 Fetch Zero Page Effective 

Address 
 T2 00, ADL Data 0 Write internal register to 

memory 
 T0 PC + 2 OP CODE 1 Next Instruction 
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A. 3.2. Absolute Addressing (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 ADL 1 Fetch low order byte of 

Effective Address 
 T2 PC + 2 ADH 1 Fetch high order byte of 

Effective Address 
 T3 ADH, ADL Data 0 Write internal register to 

memory 
 T0 PC + 3 OP CODE 1 Next Instruction 
 
 
A. 3.3. Indirect, X Addressing (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 BAL 1 Fetch Page Zero Base Address
 T2 00, BAL Data 

(Discarded) 
1  

 T3 00, BAL + X ADL 1 Fetch low order byte of 
Effective Address 

 T4 00, BAL + 
X + 1 

ADH 1 Fetch high order byte of 
Effective Address 

 T5 ADH, ADL Data 0 Write internal register to 
memory 

 T0 PC + 2 OP CODE 1 Next Instruction 
 
 
A. 3.4. Absolute, X or Absolute, Y Addressing (5 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 BAL 1 Fetch Low order byte of Base 

Address 
 T2 PC + 2 BAH 1 Fetch high order byte of Base 

Address 
 T3 ADL: BAL + 

index register 
ADH: BAH + C 

Data 
(Discarded) 

1  

 T4 ADH, ADL Data 0 Write internal register to 
memory 

 T0 PC + 3 OP CODE 1 Next Instruction 
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A. 3.5. Zero Page, X or Zero Page, Y Addressing Modes (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 BAL 1 Fetch Page Zero Base Address
 T2 00, BAL Data 

(Discarded) 
1  

 T3 ADL: BAL + 
Index register 

Data 0 Write internal register to 
memory 

 T0 PC + 2 OP CODE 1 Next Instruction 
 
 
A. 3.6. Indirect, Y Addressing Mode (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 IAL 1 Fetch Page Zero Indirect 

Address 
 T2 00, IAL BAL 1 Fetch low order byte of Base 

Address 
 T3 00, IAL + 1 BAH 1 Fetch high order byte of Base 

Address 
 T4 ADL: BAL + Y 

 
ADH: BAH 

Data 
(Discarded) 

1  

 T5 ADH, ADL Data 0 Write Internal Register to 
memory 

 T0 PC + 2 OP CODE 1 Next Instruction 
 
 
A. 4. READ — MODIFY — WRITE  OPERATIONS 

 ASL LSR    
 DEC ROL    
 INC ROR    
 The Read — Modify — Write operations involve the loading of 

operands from the operand address, modification of the operand and 
the resulting modified data being stored in the original location. 
Note: The ROR instruction will be available on MCS650X 
microprocessors after June, 1976. 

 
 
 
 
 
 



 

A-8 
 

A. 4.1. Zero Page Addressing (5 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 ADL 1 Fetch Page Zero Effective 

Address 
 T2 00, ADL Data 1 Fetch Data 
 T3 00, ADL Data 0  
 T4 00, ADL Modified 

Data 
0 Write modified Data back to 

memory 
 T0 PC + 2 OP CODE 1 Next Instruction 
 
 
A. 4.2. Absolute Addressing (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 ADL 1 Fetch low order byte of 

Effective Address 
 T2 PC + 2 ADH 1 Fetch high order byte of 

Effective Address 
 T3 ADH, ADL Data 1  
 T4 ADH, ADL Data 0  
 T5 ADH, ADL Modified 

Data 
0 Write modified Data back into 

memory 
 T0 PC + 3 OP CODE 1 Next Instruction 
 
 
A. 4.3. Zero Page, X Addressing (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 BAL 1 Fetch Page Zero Base Address
 T2 00, BAL Data 

(Discarded) 
1  

 T3 ADL: BAL + X 
(without carry) 

Data 1 Fetch Data 

 T4 ADL: BAL + X 
(without carry) 

Data 0  

 T5 ADL: BAL + X 
(without carry) 

Modified 
Data 

0 Write modified Data back into 
memory 

 T0 PC + 2 OP CODE 1 Next Instruction 
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A. 4.4. Absolute, X Addressing (7 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 BAL 1 Fetch low order byte of Base 

Address 
 T2 PC + 2 BAH 1 Fetch high order byte of Base 

Address 
 T3 ADL: BAL + X 

 
ADH: BAH + C 

Data 
(Discarded) 

1  

 T4 ADL: BAL + X 
ADH: BAH + C 

Data 1 Fetch Data 

 T5 ADH, ADL Data 0  

 T6 ADH, ADL Modified 
Data 

0 Write modified Data back into 
memory 

 T0 PC + 3 OP CODE 1 Next Instruction 
 
 
A. 5. MISCELLANEOUS OPERATIONS 

 BCC BRK PHP   
 BCS BVC PLA   
 BEQ BVS PLP   
 BMI JMP RTI   
 BNE JSR RTS   
 BPL PHA    
 
 
A. 5.1. Push Operation — PHP, PHA (3 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 
 T1 PC + 1 OP CODE 

(Discarded) 
1  

 T2 Stack Pointer* Data 0 Write Internal Register into 
Stack 

 T0 PC + 1 OP CODE 1 Next Instruction 

 *Subsequently referred to as "Stack Ptr." 
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A. 5.2. Pull Operations — PLP, PLA (4 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 OP CODE 
(Discarded) 

1  

 T2 Stack Ptr. Data 
(Discarded) 

1  

 T3 Stack Ptr. + 1 Data 1 Fetch Data from Stack 

 T0 PC + 1 OP CODE 1 Next Instruction 

 
 
A. 5.3. Jump to Subroutine — JSR (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 ADL 1 Fetch low order byte of 
Subroutine Address 

 T2 Stack Ptr. Data 
(Discarded) 

1  

 T3 Stack Ptr. PCH 0 Push high order byte of 
program counter to Stack 

 T4 Stack Ptr. -1 PCL 0 Push low order byte of 
program counter to Stack 

 T5 PC + 2 ADH 1 Fetch high order byte of 
Subroutine Address 

 T0 Subroutine 
Address (ADH, 
ADL) 

OP CODE 1 Next Instruction 
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A. 5.4. Break Operation — (Hardware Interrupt)-BRK (7 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch BRK OP CODE (or force 

BRK) 
 T1 PC + 1 

(PC on 
hardware 
interrupt) 

Data 
(Discarded) 

1  

 T2 Stack Ptr. PCH 0 Push high order byte of 
program counter to Stack 

 T3 Stack Ptr. -1 PCL 0 Push low order byte of 
program counter to Stack 

 T4 Stack Ptr. -2 P 0 Push Status Register to Stack 

 T5 FFFE 
(NMI-FFFA) 
(RES-FFFC) 

ADL 1 Fetch low order byte of 
interrupt vector 

 T6 FFFF 
(NMI-FFFB) 
(RES-FFFD) 

ADH 1 Fetch high order byte of 
interrupt vector 

 T0 Interrupt 
Vector (ADH, 
ADL) 

OP CODE 1 Next Instruction 

 
 
A. 5.5. Return from Interrupt — RTI (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 Data 
(Discarded) 

1  

 T2 Stack Ptr. Data 
(Discarded) 

1  

 T3 Stack Ptr. + 1 Data 1 Pull P from Stack 

 T4 Stack Ptr. + 2 Data 1 Pull PCL from Stack 

 T5 Stack Ptr. + 3 Data 1 Pull PCH from Stack 

 T0 PCH, PCL OP CODE 1 Next Instruction 
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A. 5.6. Jump Operation — JMP 

A. 5.6.1. Absolute Addressing Mode (3 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 ADL 1 Fetch low order byte of Jump 
Address 

 T2 PC + 2 ADH 1 Fetch high order byte of Jump 
Address 

 T0 ADH, ADL OP CODE 1 Next Instruction 
      

A. 5.6.2. Indirect Addressing Mode (5 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 IAL 1 Fetch low order byte of 
Indirect Address 

 T2 PC + 2 IAH 1 Fetch high order byte of 
Indirect Address 

 T3 IAH, IAL ADL 1 Fetch low order byte of 
Jump Address 

 T4 IAH, IAL + 1 ADH 1 Fetch high order byte of 
Jump Address 

 T0 ADH, ADL OP CODE 1 Next Instruction 

 
 
A. 5.7. Return from Subroutine — RTS (6 cycles) 

 Tn Address Bus Data Bus R/W Comments 
 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 Data 
(Discarded) 

1  

 T2 Stack Ptr. Data 
(Discarded) 

1  

 T3 Stack Ptr. + 1 PCL 1 Pull PCL from Stack 

 T4 Stack Ptr. + 2 PCH 1 Pull PCH from Stack 

 T5 PCH, PCL 
(from Stack) 

Data 
(Discarded) 

1  

 T0 PCH, PCL + 1 OP CODE 1 Next Instruction 
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A. 5.8. Branch Operation — BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS (2, 3, or 
4 cycles) 

 Tn Address Bus Data Bus R/W Comments 

 T0 PC OP CODE 1 Fetch OP CODE 

 T1 PC + 1 Offset 1 Fetch Branch Offset 

 T2* PC +2 + offset 
(w/o carry) 

OP CODE 1 Offset Added to Program 
Counter 

 T3** PC + 2 + offset 
(with carry) 

OP CODE 1 Carry Added 

*Skip if branch not taken 

**Skip if branch not taken; skip if branch operation doesn't cross page boundary. 

 


